

Introduction to Deep Learning (I2DL)

Exercise 2: Math Recap

Overview

Linear Algebra

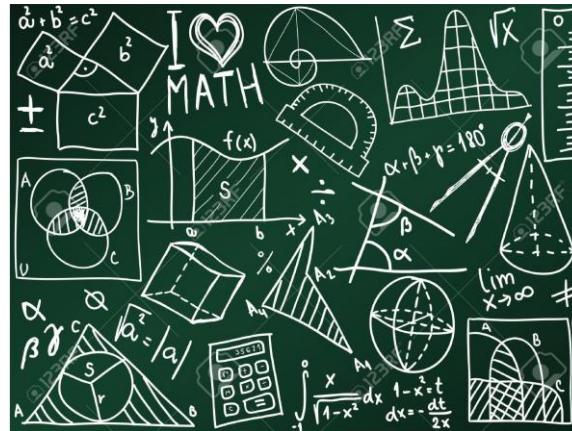
- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norms, Loss functions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions



Linear Algebra

Overview

Linear Algebra

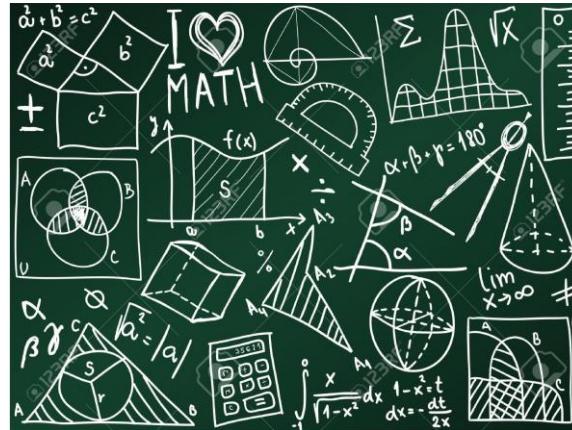
- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norm, loss function

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions



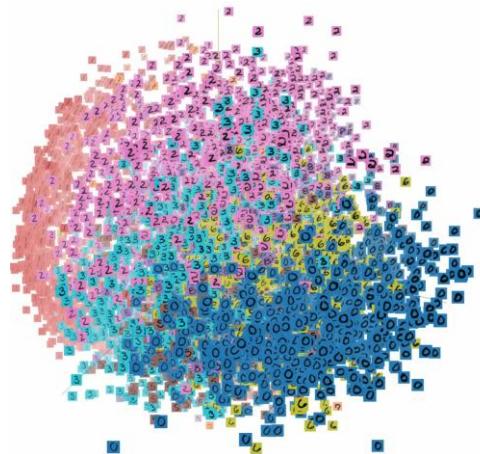
Basic Notation

- **Vector:** We call an element of \mathbb{R}^n a vector with n entries.
- **Elements of a vector:** The i th element of a vector $v \in \mathbb{R}^n$ is denoted by $v_i \in \mathbb{R}$.
- **Matrix:** We call an element of $\mathbb{R}^{n \times m}$ a matrix with n rows and m columns.
- **Elements of a matrix:** For $A \in \mathbb{R}^{n \times m}$, we denote the element at the i th row and j th column by $A_{ij} \in \mathbb{R}$.
- **Transpose:** The transpose of a matrix results from “flipping” rows and columns. We denote the transpose of a matrix $A \in \mathbb{R}^{n \times m}$ by $A^T \in \mathbb{R}^{m \times n}$. Similarly, we use transposed vectors.

Vector

An n-dimensional vector describes an element in an n-dimensional space

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$



Vector
Operations:

Addition

Subtraction

Scalar
Multiplication

Dot Product

Vector Operations

Vector Operations:

Addition

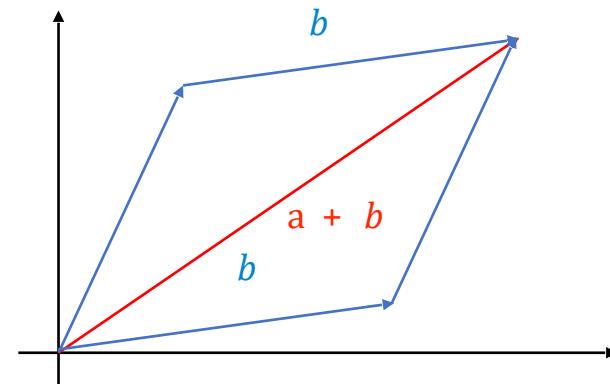
Subtraction

Scalar Multiplication

Dot Product

For $a, b \in \mathbb{R}^n$ we have

$$a + b = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix} \in \mathbb{R}^n$$



Vector Operations

Vector Operations:

Addition

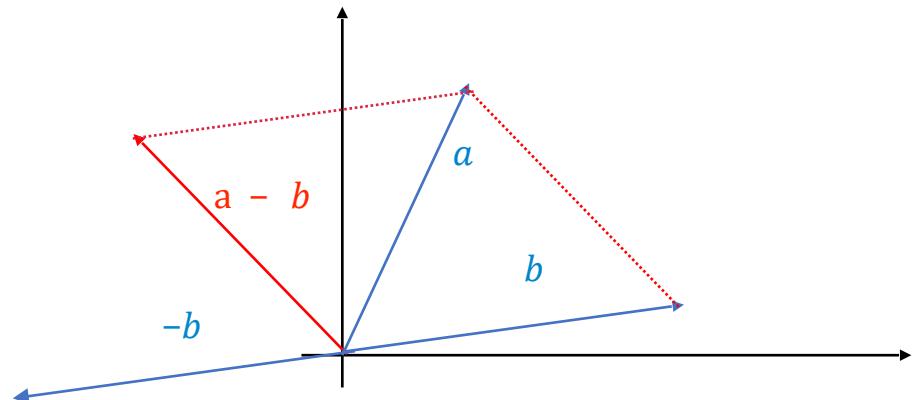
Subtraction

Scalar Multiplication

Dot Product

For $a, b \in \mathbb{R}^n$ we have

$$a - b = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_n - b_n \end{pmatrix} \in \mathbb{R}^n$$



Vector Operations

Vector Operations:

Addition

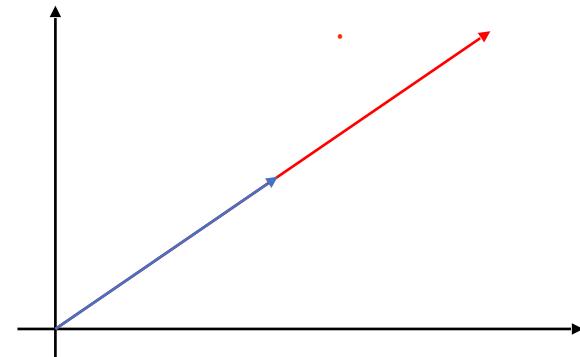
Subtraction

Scalar Multiplication

Dot Product

For $a \in \mathbb{R}^n, c \in \mathbb{R}$ we have

$$c \cdot a = \begin{pmatrix} c \cdot a_1 \\ c \cdot a_2 \\ \vdots \\ c \cdot a_n \end{pmatrix} \in \mathbb{R}^n$$



Vector Operations

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

Definition: For $a, b \in \mathbb{R}^n$, the dot product is defined as follows:

$$\begin{aligned} a \cdot b &= a^T \cdot b \\ &= a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n \\ &= \sum_{i=1}^n a_i \cdot b_i \in \mathbb{R} \end{aligned}$$

Vector Operations

Vector Operations:

Addition

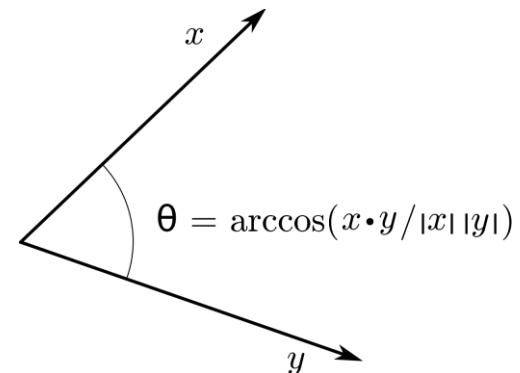
Subtraction

Scalar Multiplication

Dot Product

Properties:

- Commutative: $a \cdot b = b \cdot a$
- Geometric interpretation:
$$a \cdot b = \|a\| \cdot \|b\| \cdot \cos(\theta)$$
- Orthogonality: Two non-zero vectors are orthogonal to each other $\Leftrightarrow a \cdot b = 0$



Vector Operations

Vector Operations:

Addition

Subtraction

Scalar Multiplication

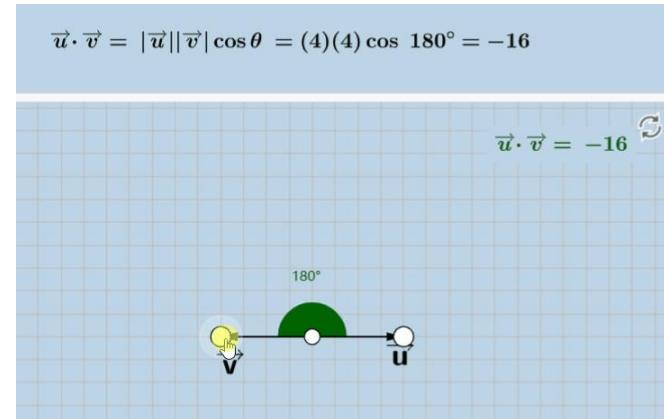
Dot Product

Properties:

- Commutative: $a \cdot b = b \cdot a$
- Geometric interpretation:
$$a \cdot b = \|a\| \cdot \|b\| \cdot \cos(\theta)$$
- Orthogonality: Two non-zero vectors are orthogonal to each other $\Leftrightarrow a \cdot b = 0$

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta = (4)(4) \cos 180^\circ = -16$$

$$\vec{u} \cdot \vec{v} = -16$$



Matrix

A matrix $A \in \mathbb{R}^{n \times m}$ is denoted as

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

Matrix
Operations:

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

Matrix

Matrix
Operations:

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

- Multiplication of matrix with a vector is defined as follows:

$$\text{For } A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^m: A \cdot b = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_1 + a_{12} \cdot b_2 + \dots + a_{1m} \cdot b_m \\ a_{21} \cdot b_1 + a_{22} \cdot b_2 + \dots + a_{2m} \cdot b_m \\ \vdots \\ a_{n1} \cdot b_1 + a_{n2} \cdot b_2 + \dots + a_{nm} \cdot b_m \end{pmatrix} \in \mathbb{R}^n$$

- Attention:** The respective dimension have to fit, otherwise the multiplication is not well-defined.

$$\Rightarrow \begin{matrix} A \\ \overset{\textstyle \smile}{n \times m} \end{matrix} \cdot \begin{matrix} b \\ \overset{\textstyle \smile}{m \times 1} \end{matrix} = \begin{matrix} c \\ \overset{\textstyle \smile}{n \times 1} \end{matrix}$$

- Example:** $A \in \mathbb{R}^{3 \times 2}, b \in \mathbb{R}^2$ with $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$ and $b = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 18 \\ 28 \end{pmatrix}$

Matrix Operations

Matrix Operations:

Matrix-vector Multiplication

Matrix-matrix Multiplication

Hadamard Product

- Similar, the multiplication of two matrices with each other is defined as follows:

For $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times l}$ we have

$$A \cdot B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1l} \\ b_{21} & b_{22} & \dots & b_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{ml} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1l} \\ c_{21} & c_{22} & \dots & c_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nl} \end{pmatrix} \in \mathbb{R}^{n \times l} \text{ where}$$

$$c_{ij} = \sum_{k=1}^m a_{ik} \cdot b_{kj} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{im} \cdot b_{mj}$$

- Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times n}$ we have $A \cdot B \neq B \cdot A$

Matrix Operations

Matrix Operations:

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

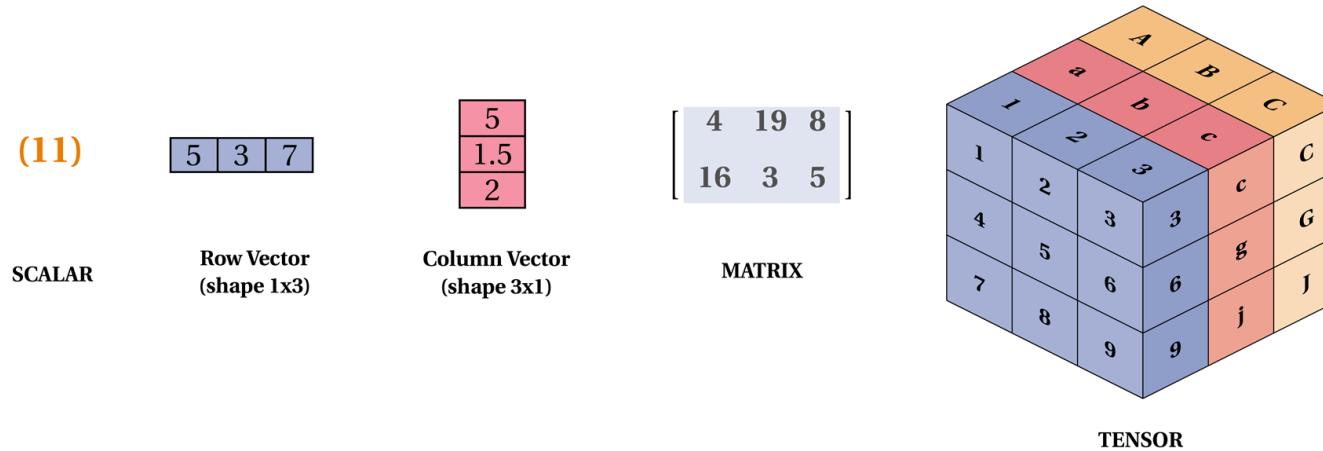
- The Hadamard product is the element wise product of two matrices. For two matrices of the same dimension $A, B \in \mathbb{R}^{n \times m}$ it is given by

$$A \odot B = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ a_{21} & \dots & a_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1m} \\ b_{21} & \dots & b_{2m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_{11} & \dots & a_{1m} \cdot b_{1m} \\ a_{21} \cdot b_{21} & \dots & a_{2m} \cdot b_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdot b_{n1} & \dots & a_{nm} \cdot b_{nm} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

For all matrix operations, it is important to check the dimensions!

Tensor

- Definition: A tensor is a multidimensional array and a generalization of the concepts of a vector and a matrix.

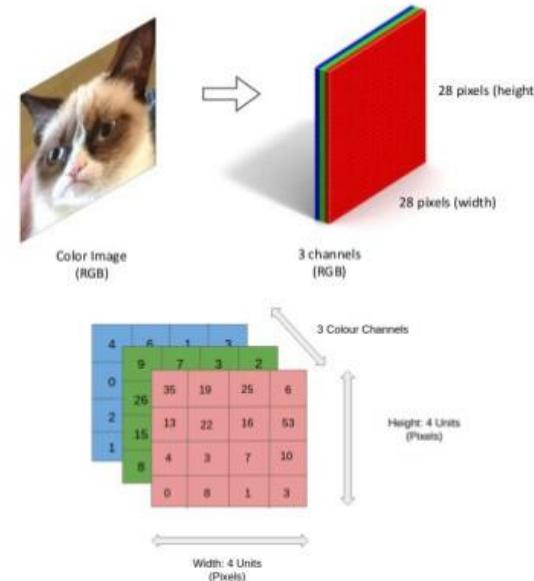


Tensors in Computer Vision

color image is 3rd-order tensor

Tensors are used to represent RGB images.

$H \times W \times RGB$



Source: <https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors>

Norm

- **Norm:** measure of the “length” of a vector
- **Definition:** A norm is a non-negative function $\|\cdot\| : V \rightarrow \mathbb{R}$ which is defined by the following properties for elements $v, w \in V$:
 1. Triangle inequality: $\|v + w\| \leq \|v\| + \|w\|$
 2. $\|a \cdot v\| = |a| \cdot \|v\|$ for a scalar
 3. $\|v\| = 0$ if and only if $v = 0$
- (* V is a vector space over a field \mathbb{F} ; in our case we have $V = \mathbb{R}^n$)
- **Remark:** Every such function defines a norm on the vector space.
- **Examples:** L1-norm, L2-norm

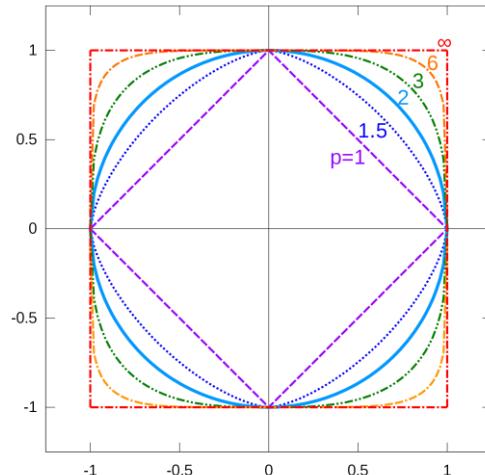
L1-Norm

- **Norm:** measure of the “length” of a vector
- **L1-Norm:** We denote the L1-norm with $\| \cdot \|_1 : \mathbb{R}^n \rightarrow \mathbb{R}$ such that for a vector $v = \sum_n (v_1, v_2, \dots, v_n)$

$$\|v\|_1 = \sum_{i=1}^n |v_i|$$

- **Example:** Let $v = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \in \mathbb{R}^3$, then

$$\|v\|_1 = (1 + 3 + 2) = 6$$



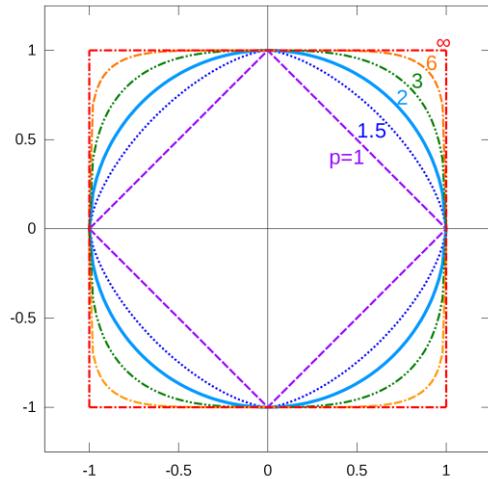
L2-Norm

- **Norm:** measure of the “length” of a vector
- **L2-Norm:** We denote the L2-norm with $\|\cdot\|_2 : \mathbb{R}^n \rightarrow \mathbb{R}$ such that for a vector $v = (v_1, v_2, \dots, v_n)$

$$\|v\|_2 = \sqrt{\sum_{i=1}^n (v_i)^2}$$

- **Example:** Let $v = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \in \mathbb{R}^3$, then

$$\|v\|_2 = \sqrt{(1^2 + (-3)^2 + 2^2)} = \sqrt{14}$$

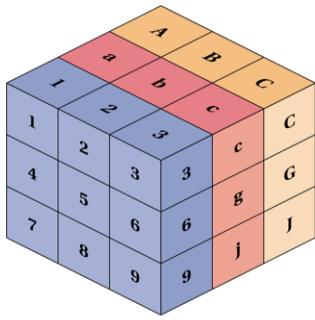
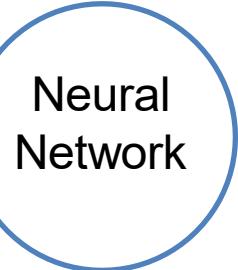


Loss functions

- A loss function is a function that takes as input two vectors and as output measures the distance between these two uses a norm to measure the distance
L1-Loss uses the L1-norm, L2-Loss uses the L2-norm
- **L1-Loss:** The L1-Loss between two vectors $v, w \in \mathbb{R}^n$ is defined as $L_1(v, w) = \|v - w\|_1 = \sum_{i=1}^n |v_i - w_i|$
- **L2-Loss:** The L2-Loss between two vectors $v, w \in \mathbb{R}^n$ is defined as

$$L_2(v, w) = \|v - w\|_2 = \sqrt{(v_1 - w_1)^2 + \dots + (v_n - w_n)^2}$$

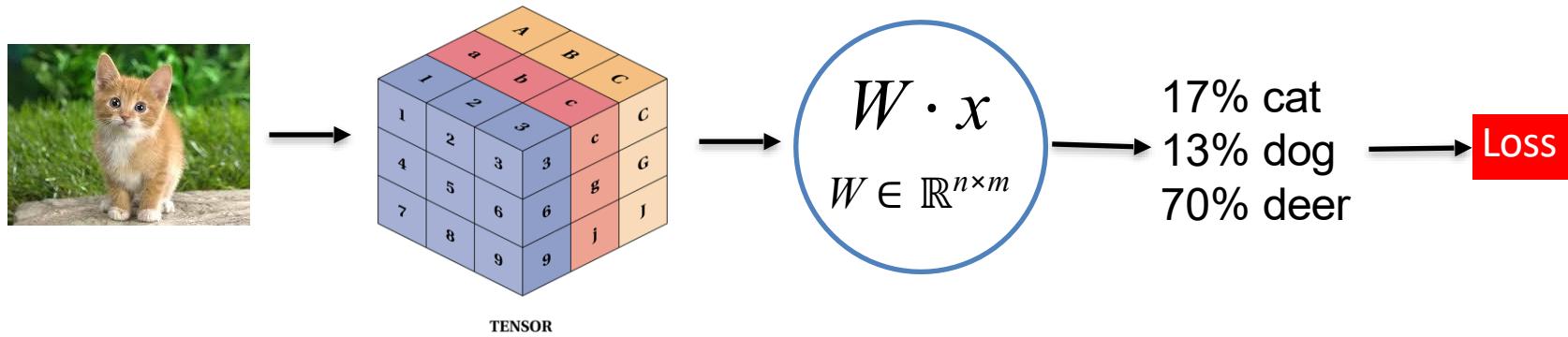
Outlook



17% cat
13% dog
70% deer

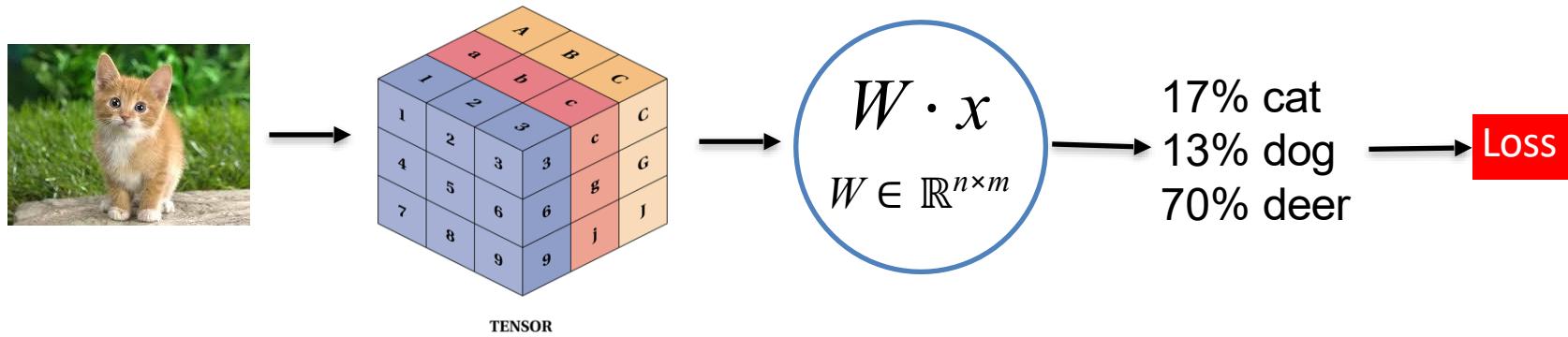
Loss

Outlook



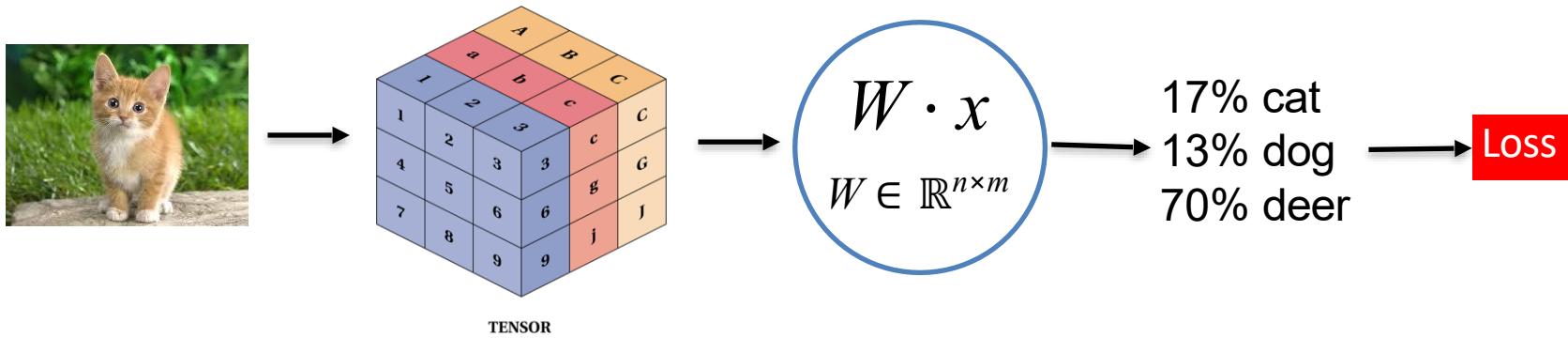
The elements of the matrix are called weights and they determine the prediction of our network.

Outlook



How can we get an accurate matrix to minimize the loss?

Outlook



Gradient Descent: Method to approximate the best values for the weights

Calculus

Overview

Linear Algebra

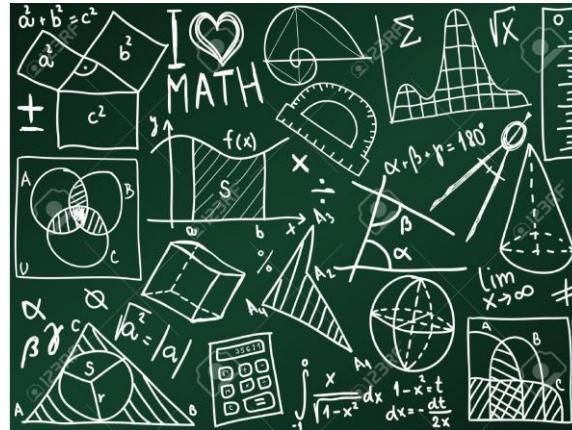
- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norm & Loss functions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions



Derivatives

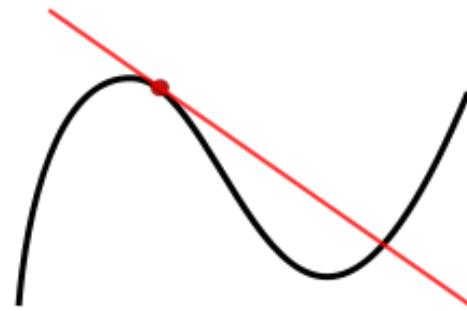
- **Well known:** Scalar derivatives, i.e. derivatives of functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- **Matrix calculus:** Extension of calculus to higher dimensional setting, i.e. functions like $f: \mathbb{R}^n \rightarrow \mathbb{R}$, $f: \mathbb{R} \rightarrow \mathbb{R}^n$, $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ and $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ for $n, m \in \mathbb{N}$
- Actual calculus we use is relatively trivial, but the notation can often make things look much more difficult than they are.

Overview

Setting	Derivative	Notation
$f: \mathbb{R} \rightarrow \mathbb{R}$	Scalar derivative	$f(x)$
$f: \mathbb{R}^n \rightarrow \mathbb{R}$	Gradient	$\nabla f(x)$
$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$	Gradient	$\nabla f(x)$
$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$	Jacobian	J_f

Scalar derivatives

- **Setting:** $f: \mathbb{R} \rightarrow \mathbb{R}$
- **Notation:** $f'(x)$ or $\frac{df}{dx}$
- **Derivative:** Derivative of a function at a chosen input value is the slope of the tangent line to the graph of the function at that point.



Derivation Rules

Common functions	Derivative
$f(x) = c$ for $c \in \mathbb{R}$	$f'(x) = 0$
$f(x) = x$	$f'(x) = 1$
$f(x) = x^n$ for $n \in \mathbb{N}$	$f'(x) = n \cdot x^{n-1}$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$

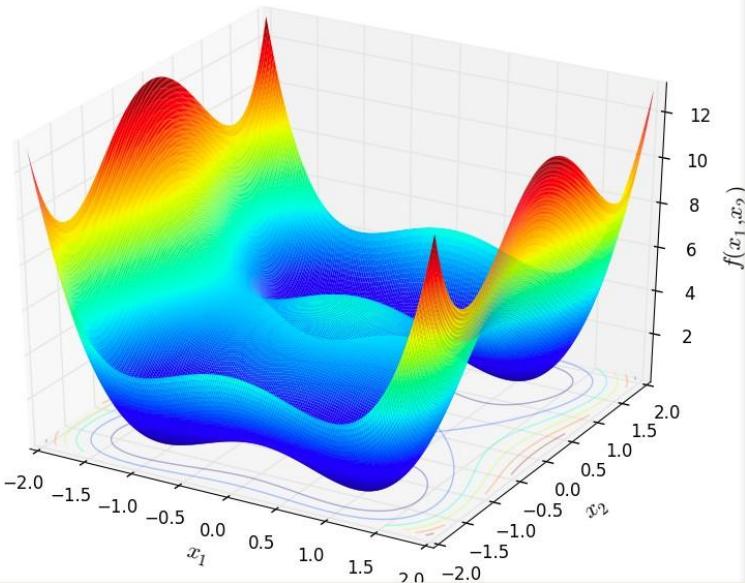
Derivation Rules

Rule	Function	Derivative
Sum rule	$f(x) + g(x)$	$f'(x) + g'(x)$
Difference rule	$f(x) - g(x)$	$f'(x) - g'(x)$
Multiplication by constant	$c \cdot f(x)$	$c \cdot f'(x)$
Product rule	$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
Quotient rule	$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$
Chain rule	$f(g(x))$	$f'(g(x)) \cdot g'(x)$

Multivariate functions $f: \mathbb{R}^n \rightarrow \mathbb{R}$

Multivariate Function

$$f: \mathbb{R}^n \rightarrow \mathbb{R}$$



Gradient

$$\nabla f: \mathbb{R}^n \rightarrow \mathbb{R}^n$$

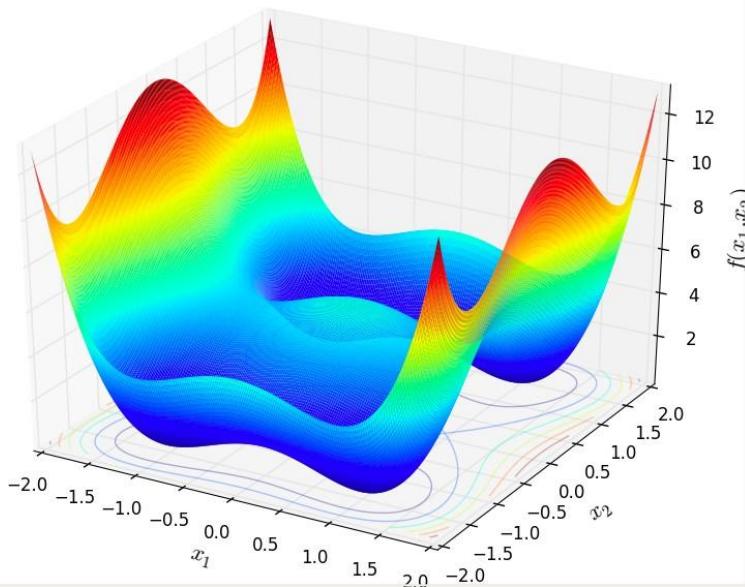
Partial derivative

$$\nabla f: x \rightarrow \nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Multivariate functions $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$

Multivariate Function

$$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$$

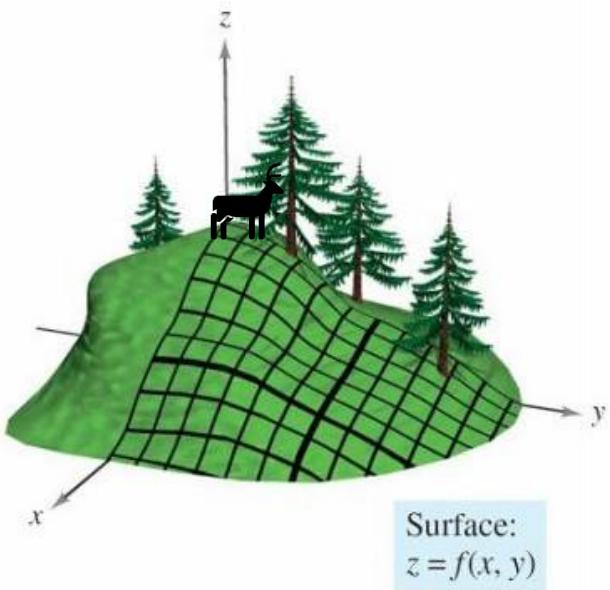


Gradient

$$\nabla f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n \times m}$$

$$\nabla f: x \rightarrow \nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_{11}} & \frac{\partial f(x)}{\partial x_{12}} & \cdots & \frac{\partial f(x)}{\partial x_{1m}} \\ \frac{\partial f(x)}{\partial x_{21}} & \frac{\partial f(x)}{\partial x_{22}} & \cdots & \frac{\partial f(x)}{\partial x_{2m}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{n1}} & \frac{\partial f(x)}{\partial x_{n2}} & \cdots & \frac{\partial f(x)}{\partial x_{nm}} \end{pmatrix}$$

Gradient – Example 1



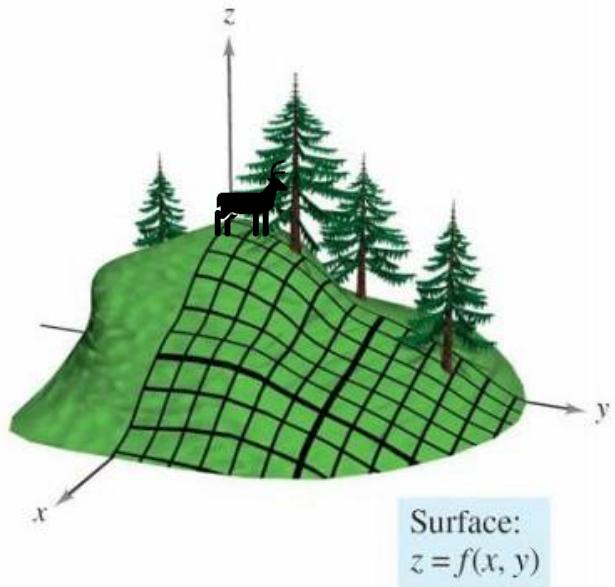
$$f(x, y) = 3x^2y \quad \nabla f(x, y) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right]$$

$$\frac{\partial}{\partial x} 3yx^2 = 3y \frac{\partial}{\partial x} x^2 = 3y2x = 6yx$$

$$\frac{\partial}{\partial y} 3x^2y = 3x^2 \frac{\partial}{\partial y} y = 3x^2 \frac{\partial}{\partial y} = 3x^2 \times 1 = 3x^2$$

$$\nabla f(x, y) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right] = [6yx, 3x^2]$$

Gradient – Example 2



$$g(x, y) = 2x + y^8$$

$$\frac{\partial g(x, y)}{\partial x} = \frac{\partial 2x}{\partial x} + \frac{\partial y^8}{\partial x} = 2 \frac{\partial x}{\partial x} + 0 = 2 \times 1 = 2$$

$$\frac{\partial g(x, y)}{\partial y} = \frac{\partial 2x}{\partial y} + \frac{\partial y^8}{\partial y} = 0 + 8y^7 = 8y^7$$

$$\nabla g(x, y) = [2, 8y^7]$$

Vector-valued functions

Vector-Valued function

$$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$$

$$f: x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \rightarrow \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

Jacobian Matrix

$$J_f: \mathbb{R}^n \rightarrow \mathbb{R}^{m \times n}$$

$$x \rightarrow J_f(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix}$$

Jacobian Matrix – Example 3

Assume that $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ with $f(x, y) = \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix}$ where $f_1(x, y) = 3x^2y$ and $f_2(x, y) = 2x + y^8$.

Calculate Jacobian matrix:

$$J_f(x) = \begin{pmatrix} \frac{\partial f_1(x, y)}{\partial x} & \frac{\partial f_1(x, y)}{\partial y} \\ \frac{\partial f_2(x, y)}{\partial x} & \frac{\partial f_2(x, y)}{\partial y} \end{pmatrix} = \begin{pmatrix} 6xy & 3x^2 \\ 2 & 8y^7 \end{pmatrix}$$

Single Variable Chain Rule

Setting: We are given the function $h(x) = f(g(x))$.

Task: Compute the derivative of this function with chain rule.

1. Introduce the intermediate variable: Let $u = g(x)$ be the intermediate variable.

2. Compute individual derivatives: $\frac{df}{du}$ and $\frac{dg}{dx} = \frac{du}{dx}$

3. Chain rule: $\frac{dh}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$

4. Substitute intermediate variables back

Single Variable Chain Rule: Example

Example: Let $h(x) = \sin(x^2)$.

Task: Compute the derivative of this function with chain rule.

Observation: Here, $h(x) = f(g(x))$ with $f(x) = \sin(x)$ and $g(x) = x^2$.

1. Introduce the intermediate variable: Let $u = x^2$ be the intermediate variable.

2. Compute individual derivatives: $\frac{df}{du} = \cos(u)$ and $\frac{dg}{dx} = \frac{du}{dx} = 2x$

3. Chain rule: $\frac{dh}{dx} = \frac{df}{du} \cdot \frac{du}{dx} = \cos(u) \cdot 2x$

4. Substitute intermediate variables back: $\frac{dh}{dx} = \cos(u) \cdot 2x = \cos(x^2) \cdot 2x$

Total Derivative Chain Rule

General Formalism:

$$\begin{aligned}\frac{\partial f(x, u_1(x), \dots, u_n(x))}{\partial x} &= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial x} + \frac{\partial f}{\partial u_2} \frac{\partial u_2}{\partial x} + \dots + \frac{\partial f}{\partial u_n} \frac{\partial u_n}{\partial x} \\ &= \frac{\partial f}{\partial x} + \sum_{i=1}^n \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x}\end{aligned}$$

References

- https://en.wikipedia.org/wiki/Matrix_calculus
- <http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html>
- <https://arxiv.org/pdf/1802.01528.pdf>
- <https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives>
- <https://explained.ai/matrix-calculus/>
- http://www.deeplearningbook.org/contents/part_basics.html
- <https://towardsdatascience.com/calculating-gradient-descent-manually-6d9bee09aa0b>

Probability Theory

Overview

Linear Algebra

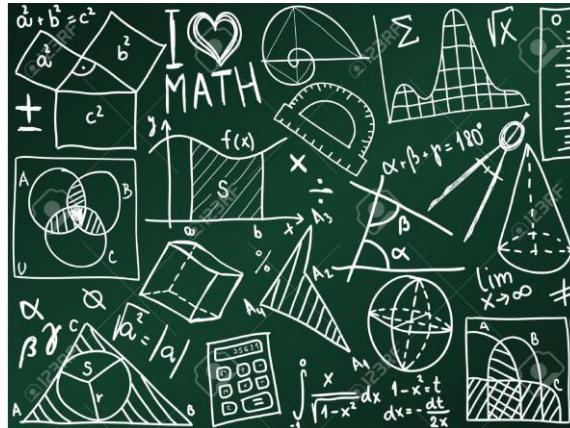
- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norm & Loss functions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions



Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

A probability space consist of three elements $(\Omega, \mathcal{F}, \mathbb{P})$:

- **Sample space Ω** : The set of all outcomes of a random experiment.
- **Event Space \mathcal{F}** : A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω .
- **Probability measure \mathbb{P}** : A function $\mathbb{P} : \mathcal{F} \rightarrow [0, 1]$ that satisfies the following three properties:
 1. $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$
 2. $\mathbb{P}(\Omega) = 1$
 3. $\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$ for $n \in \mathbb{N}$ and disjoint events $A_1, A_2, \dots, A_n \in \mathcal{F}$

The probability space provides a formal model of a random experiment.

Probability space: Example

A probability space consists of three elements: $(\Omega, \mathcal{F}, \mathbb{P})$

- **Sample space Ω** : The set of all outcomes of a random experiment.
- **Event Space \mathcal{F}** : A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω .
- **Probability measure \mathbb{P}** : A function $\mathbb{P} : \mathcal{F} \rightarrow [0, 1]$ that satisfies the following three properties: (...)

Example: Tossing a six-sided die

- **Sample space**: $\Omega = \{1,2,3,4,5,6\}$
- **Event space**: $\mathcal{F}_1 = \{\emptyset, \Omega\}$, $\mathcal{F}_2 = \mathcal{P}(\Omega)$,
 $\mathcal{F}_3 = \{\emptyset, A_1 = \{1,3,5\}, A_2 = \{2,4,6\}, \Omega = \{1,2,3,4,5,6\}\}$
- **Probability measure \mathbb{P}** : $\mathcal{F} \rightarrow \mathbb{R}$ with $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$ and in the case of \mathcal{F}_3 we know that $\mathbb{P}(A_1) + \mathbb{P}(A_2) = 1$.
- **Example event space \mathcal{F}_3** : Possible probability measure are

$$1. \mathbb{P}_1(A_1) = \frac{1}{2} = \mathbb{P}_1(A_2)$$

$$2. \mathbb{P}_2(A_1) = \frac{1}{4} \text{ and } \mathbb{P}_2(A_2) = \frac{3}{4}.$$

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e.

$$X: \Omega \rightarrow \mathbb{R}.$$

- We distinguish between **discrete** and **continuous** random variables.

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X : \Omega \rightarrow \mathbb{R}$.

Example: Tossing a fair six-sided die

- **Underlying experiment:** $\Omega = \{1,2,3,4,5,6\}$, $\mathcal{F} = \mathcal{P}(\Omega)$, $\mathbb{P}(\{x\}) = \frac{1}{6} \forall x \in \Omega$
- **Random variable** : Number that appears on the die, $X : \Omega \rightarrow \{1,2,3,4,5,6\}$
⇒ discrete random variable
- **Example:** One element in Ω is $\omega = 4$. Then $X(\omega) = 4$.
- **Probability measure** \mathbb{P} :

$$\mathbb{P}(X = 4) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = \omega = 4\}) = \mathbb{P}(\{4\}) = \frac{1}{6}$$

discrete

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X : \Omega \rightarrow \mathbb{R}$.

Example: Flipping a fair coin two times

- **Underlying experiment:** $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$,

$$\mathcal{F} = \mathcal{P}(\Omega) \text{ and } \mathbb{P}(\{\omega\}) = \frac{1}{4} \forall \omega \in \Omega$$

- **Random variable** : number of heads that appeared in the two flips, $X : \Omega \rightarrow \{0, 1, 2\}$
 \Rightarrow discrete random variable

- **Example:** One element in Ω is $\omega = (T, H)$. Then $X(\omega) = 1$.

- **Probability measure** \mathbb{P} :

$$\mathbb{P}(X = 1) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = 1\}) = \mathbb{P}(\{(H, T), (T, H)\}) = \frac{1}{2}$$

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X: \Omega \rightarrow \mathbb{R}$.

Example: radioactive decay

- **Underlying experiment:** $\Omega = \mathbb{R}_{\geq 0}$, $\mathcal{F} = \mathcal{B}(\Omega)$, $\mathbb{P} =$ is the Lebesgue measure
- **Random variable** : indicating amount of time that it takes for a radioactive particle to decay, $X: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \Rightarrow$ continuous random variable
- **Probability measure** \mathbb{P} : is defined on the set of events \mathcal{F} and is now used for random variables as follows:
$$\mathbb{P}(a \leq X \leq b) = \mathbb{P}(\{\omega \in \Omega : a \leq X(\omega) \leq b\})$$

Continuous

Probability measures

⇒ specify the probability measures with alternative functions (CDF, PDF and PMF)

Random Variable		
Discrete	Cumulative distribution function (CDF) $F_X(x) = \mathbb{P}(X \leq x)$	Probability mass function (PMF) $p_X(x) = \mathbb{P}(X = x)$
Continuous	Cumulative distribution function (CDF) $F_X(x) = \mathbb{P}(X \leq x)$	Probability distribution function (PDF)

Cumulative Distribution Function

- A **cumulative distribution function** (CDF) of a random variable X is a function $F_X : \mathbb{R} \rightarrow [0,1]$ which is defined as

$$F_X(x) = \mathbb{P}(X \leq x)$$

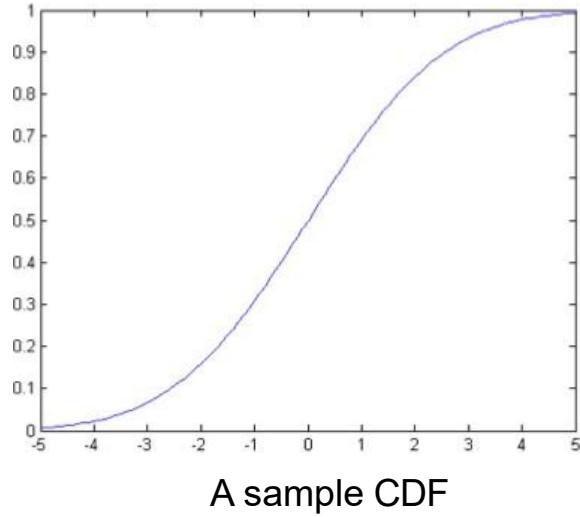
- **Properties:** Per definition, it satisfies the following properties:

$$1. \ 0 \leq F_X(x) \leq 1$$

$$2. \ \lim_{x \rightarrow -\infty} F_X(x) = 0$$

$$3. \ \lim_{x \rightarrow \infty} F_X(x) = 1$$

$$4. \ \forall x \leq y \implies F_X(x) \leq F_X(y)$$



Discrete Case: Probability Mass Function

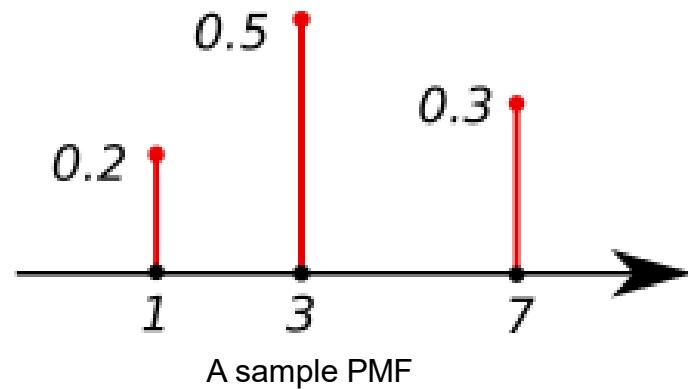
- The **probability mass function** of a random variable is a function $p_X : \Omega \rightarrow \mathbb{R}$ defined as

$$p_X(x) = \mathbb{P}(X = x)$$

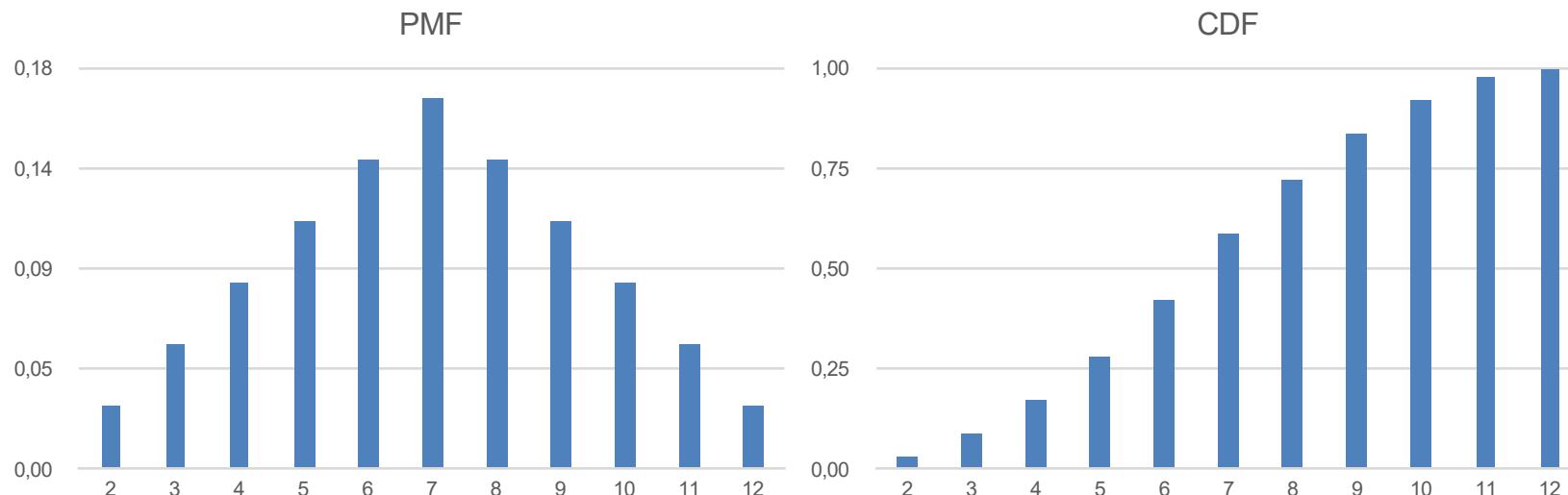
- **Properties:** Again, we can derive some properties:

$$1. 0 \leq p_X(x) \leq 1$$

$$2. \sum_{x \in \Omega} p_X(x) = 1$$



Discrete Example: Sum of 2 Dice Rolls



Continuous case: Probability Density Function

- **Continuous case:** For some continuous random variables, the CDF $F_X(x)$ is differentiable everywhere. Then we define the probability density function as the function $f_X(x) : \Omega \rightarrow \mathbb{R}$ with

$$f_X(x) = \frac{dF_X(x)}{dx}$$

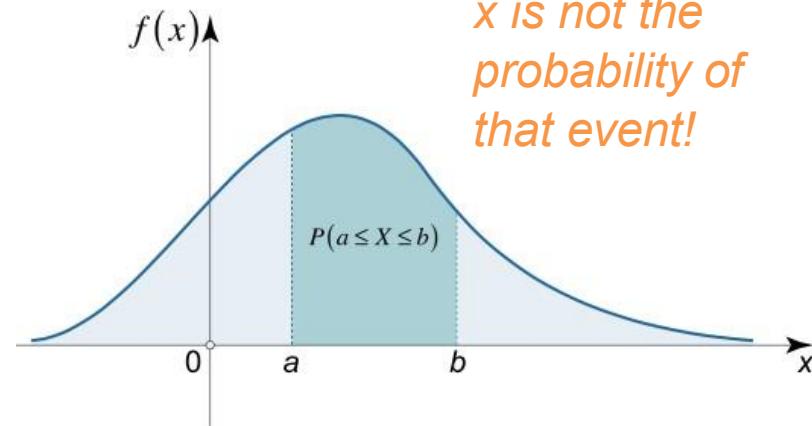
- **Properties:**

$$1. f_X(x) \geq 0$$

$$2. \int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$3. \int_a^b f_X(x) dx = F_X(b) - F_X(a)$$

Note: the value of a PDF at any given point x is not the probability of that event!



Expectation of a random variable

- **Idea:** “weighted average” of the values that the random variable can take on
- **Discrete setting:** Assume that X is a discrete random variable with PMF $p_X(x)$. Then the expectation of X is given by

$$\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x)$$

- **Continuous setting:** Assume that X is a continuous random variable with PDF $f_X(x)$. Then the expectation of is given by

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

Expectation: Example

- **Discrete setting:** Assume that X is a discrete random variable with PMF $p_X(x)$. Then the expectation of X is given by

$$\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x)$$

Example: Tossing a six-sided die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

X : represents the outcome of the toss

$$p_X(x) = \mathbb{P}(X = x) = \frac{1}{6} \quad \forall x \in \Omega$$

$$\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

Expectation of a random variable

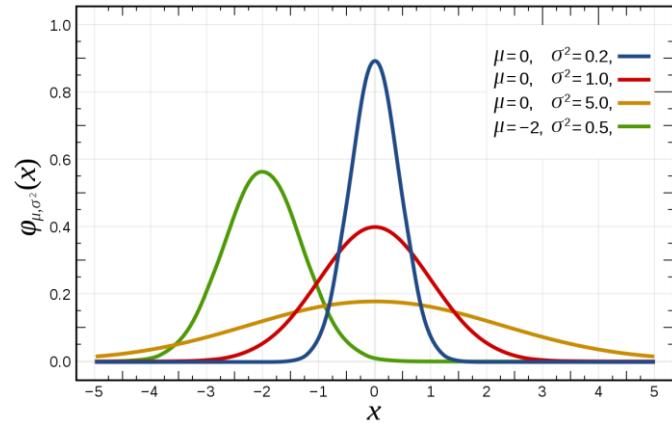
Properties: We encounter several important properties for the expectation, i.e.

1. $\mathbb{E}[a] = a$ for any constant $a \in \mathbb{R}$
2. Linearity: $\mathbb{E}[aX + bY] = a \cdot \mathbb{E}[X] + b \cdot \mathbb{E}[Y]$ for any constants $a, b \in \mathbb{R}$

Variance of a random variable

- **Idea:** The variance of a random variable is a measure how concentrated the distribution of a random variable is around its mean.
- **Definition:** The variance is defined as

$$\begin{aligned}\text{Var}(X) &= \mathbb{E}[(X - \mathbb{E}[X])^2] \\ &= \mathbb{E}[X^2] - \mathbb{E}[X]^2\end{aligned}$$



Variance of a random variable

Definition: The variance is defined as $\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Example: Tossing a fair six-sided die

$\Omega = \{1,2,3,4,5,6\}$, X : represents the outcome of the toss

$$p_X(x) = \mathbb{P}(X = x) = \frac{1}{6} \quad \forall x \in \Omega$$

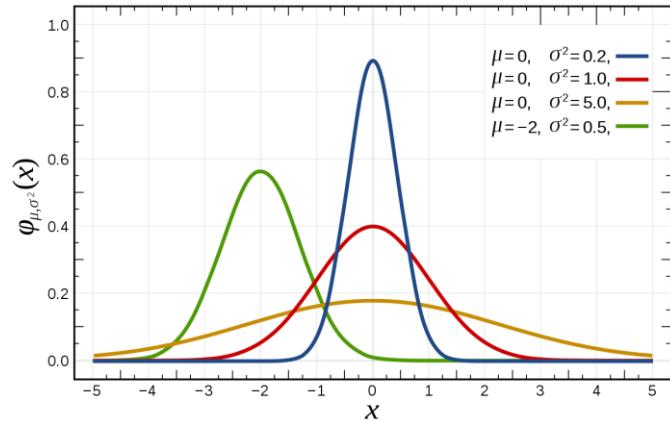
$$\mathbb{E}[X] = 3.5, \mathbb{E}[X]^2 = 12\frac{1}{4}$$

$$\mathbb{E}[X^2] = \sum_{x \in \Omega} x^2 \cdot p_X(x) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} = 15\frac{1}{6}$$

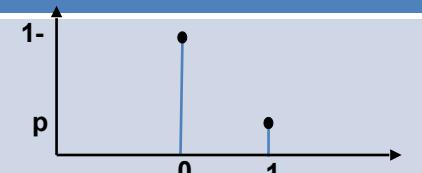
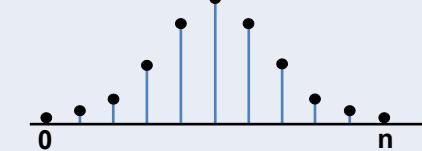
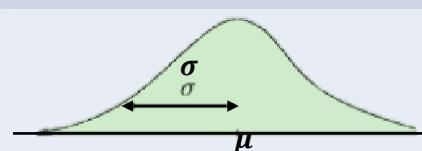
$$\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 15\frac{1}{6} - 12\frac{1}{4} = \frac{35}{12} \approx 2.91$$

Variance of a random variable

- **Properties:** The variance has the following properties, i.e.
 1. $\text{Var}(a) = 0$ for any constant $a \in \mathbb{R}$
 2. $\text{Var}(a \cdot X + b) = a^2 \cdot \text{Var}(X)$



Standard Probability Distributions

Distribution	Parameter & Notation	PDF or PMF	Mean	Variance	Illustration
Bernoulli distribution (Discrete)	$X \sim \text{Ber}(p)$ $0 \leq p \leq 1$	$p_X(k) = p^k(1 - p)^{1-k}$	$\mathbb{E}[X] = p$	$\text{Var}(X) = p(1 - p)$	 A plot showing the probability mass function of a Bernoulli distribution. The x-axis is labeled with 0 and 1, and the y-axis is labeled with p and 1-p. Blue vertical lines connect the points (0, p) and (1, 1-p) to the x-axis.
Binomial distribution (Discrete)	$X \sim \text{Bin}(n, p)$ $n \in \mathbb{N}, p \in [0,1]$	$p_X(k) = \binom{n}{k} p^k(1 - p)^{n-k}$	$\mathbb{E}[X] = n \cdot p$	$\text{Var}(X) = np(1 - p)$	 A plot showing the probability mass function of a binomial distribution. The x-axis is labeled with 0, n, and k. Blue vertical lines connect points on a curve to the x-axis, showing the distribution of k successes in n trials.
Uniform distribution (Continuous)	$X \sim U(a, b)$ $-\infty < a < b < \infty$	$f_X(x) = \begin{cases} \frac{1}{(b-a)} & x \in [a, b] \\ 0 & \text{else} \end{cases}$	$\mathbb{E}[X] = \frac{1}{2}(a + b)$	$\text{Var}(X) = \frac{1}{12}(b - a)^2$	A plot showing the probability density function of a uniform distribution. The x-axis is labeled with a and b. A blue rectangle is drawn between a and b, representing the constant density over the interval.
Normal distribution (Continuous)	$X \sim \mathcal{N}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_{\geq 0}$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	$\mathbb{E}[X] = \mu$	$\text{Var}(X) = \sigma^2$	 A plot showing the probability density function of a normal distribution. The x-axis is labeled with mu and sigma. A green bell-shaped curve is centered at mu, with the width indicated by two vertical arrows labeled sigma.

References

- <http://cs229.stanford.edu/section/cs229-prob.pdf>
 - Comprehensive Probability Review – **recommended!**
- <https://stanford.edu/~shervine/teaching/cme-106/cheatsheet-probability>
 - Quick Overview
- <https://www.deeplearningbook.org/contents/prob.html>
 - Another great resource. Also covers information theory basics.