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Basic Notation

•

•

entries.

• rows and

Vector: We call an element of ℝn a vector with

Elements of a vector: The th element of a vector v ∈ ℝn is denoted

by vi ∈ ℝ.

Matrix: We call an element of ℝn×m a matrix with

columns.

Elements of a matrix: For A ∈ ℝn×m, we denote the element at the 

th row and jth column by Aij ∈ ℝ.
•

• Transpose: The transpose of a matrix results from “flipping” rows and
columns. We denote the transpose of a matrix A ∈ ℝn×m by

AT ∈ ℝm×n. Similarly, we use transposed vectors.

𝑛

𝑖

𝑛 𝑚

𝑖
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Vector
An n-dimensional vector describes an element in an n-dimensional space

v =

v1 

v2

⋮
vn

∈ ℝn

6https://projector.tensorflow.org/
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Vector Operations

For a, b ∈ ℝn we have

a +  b =

a +  b1 1

a2 +  b2

⋮

an +  bn

∈ ℝn

𝑏

𝑏

a +  𝑏
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Vector Operations

a −  b =

For a, b ∈ ℝn we have

a1 −  b1 

a2 −  b2

⋮

an −  bn

∈ ℝn
𝑎

𝑏

a −  𝑏

−𝑏

Vector 

Operations:
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Vector Operations

For a ∈ ℝn, c ∈ ℝ we have

c ⋅ a =

c ⋅ a1 

c ⋅ a2

⋮
c ⋅ an

∈ ℝn

⋅

Vector 

Operations:
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Vector Operations

Definition: For a, b ∈ ℝn, the dot product is defined as follows:

a ⋅ b = aT ⋅ b

= a1 ⋅ b1 + a2 ⋅ b2 + … + an ⋅ bn

=σ𝑖 =1
𝑛 ai ⋅ bi ∈ ℝ

Vector 

Operations:
Addition Subtraction

Scalar 

Multiplication
Dot Product
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Vector Operations

Properties:

• Commutative: a ⋅ b =  b ⋅ a

• Geometric interpretation:

a ⋅ b =  ∥a∥ ⋅ ∥b∥ ⋅ cos(θ)

• Orthogonality: Two non-zero vectors are 
orthogonal to each other ⟺  a ⋅ b =  0

Vector 

Operations:
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Vector Operations

Properties:

• Commutative: a ⋅ b =  b ⋅ a

• Geometric interpretation:

a ⋅ b =  ∥a∥ ⋅ ∥b∥ ⋅ cos(θ)

• Orthogonality: Two non-zero vectors are 
orthogonal to each other ⟺  a ⋅ b =  0

Vector 

Operations:
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Matrix
A matrix A ∈ ℝn×m is denoted as

A =

a11  a12 …   a1m 

a21 a22 …  a2m

⋮  ⋮  ⋱  ⋮
an1 an2 …  anm

∈ ℝn×m
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Matrix

• Multiplication of matrix with a vector is defined as follows:

For A ∈ ℝn×m, b ∈ ℝm: A ⋅ b =

• Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.

⟹   
⏟
A ⋅  

⏟
b =  

⏟
c

n×m m×1 n×1

•
Example: A ∈ ℝ

a11  a12 …   a1m 

a21 a22 …  a2m

⋮  ⋮  ⋱  ⋮
an1 an2 …  anm

⋅

b1 

b2

⋮

bm

=

a11 ⋅ b1 +  a12 ⋅ b2 +  …  +  a1m ⋅ bm 

a21 ⋅ b1 +  a22 ⋅ b2 +  …  +  a2m ⋅ bm

⋮

an1 ⋅ b1 +  an2 ⋅ b2 +  …  +  anm ⋅ bm

∈ ℝ
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n

3×2 2, b ∈ ℝ  with A = and b =  ⟹ ⋅ =

Matrix 

Operations:

Matrix-vector 

Multiplication

Matrix-matrix 

Multiplication

Hadamard 

Product

1 2
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3
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3
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Matrix Operations

• Similar, the multiplication of two matrices with each other is defined as follows: 

For A ∈ ℝn×m, B ∈ ℝm×l we have

∈ ℝn×l where

m

cij =  ∑ aik ⋅ bkj =  ai1 ⋅ b1j +  ai2 ⋅ b2j +  …  +  aim ⋅ bmj

k=1

• Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices A ∈ ℝn×m, B ∈ ℝm×n we 

have A ⋅ B ≠  B ⋅ A

A ⋅ B =

a11  a12 …   a1m 

a21 a22 …  a2m

⋮  ⋮  ⋱  ⋮
an1 an2 …  anm

⋅

b11 b12 …   b1l 

b21 b22 …  b2l

⋮  ⋮  ⋱  ⋮

bm1 bm2 …  bml

=

c11 c12 …   c1l 

c21 c22 …  c2l

⋮  ⋮  ⋱  ⋮
cn1 cn2 …  cnl

Matrix 

Operations:
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Matrix Operations

• The Hadamard product is the element wise product of two matrices. For 

two matrices of the same dimension A, B ∈ ℝn×m it is given by

For all matrix operations, it is important to check the dimensions!

A ⊙ B =

a11 …   a1m 

a21 …  a2m

⋮  ⋱  ⋮
an1 …  anm

⋅

b11 …  b1m 

b21 …  b2m

⋮  ⋱  ⋮

bn1 …  bnm

=

a11 ⋅ b11 

a21 ⋅ b21

⋮

an1 ⋅ bn1

…

…

⋱

…

a1m ⋅ b1m 

a2m ⋅ b2m

⋮

anm ⋅ bnm

∈ ℝn×m
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Tensor

• Definition: A tensor is a multidimensional array and a generalization of the 

concepts of a vector and a matrix.

17
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Tensors are used to 
represent RGB 

images.

H ×  W ×  RGB

Source: https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

18

Tensors in Computer Vision
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Norm

• Norm: measure of the “length” of a vector

• Definition: A norm is a non-negative function ∥ ⋅ ∥ : V →  ℝ 
which is defined by the following the properties for elements 

v, w ∈ V:

1. Triangle inequality: ∥v +  w∥ ≤  ∥v∥ +  ∥w∥
2. ∥a ⋅ v∥ =  a ⋅ ∥v∥ for a scalar

3. ∥v∥ =  0 if and only if =  0

(*V is a vector space over a field 𝔽; in our case we have V =  ℝn)

• Remark: Every such function defines a norm on the vector space.

• Examples: L1-norm, L2-norm

I2DL: Prof. Niessner



L1-Norm
• Norm: measure of the “length” of a vector

• L1-Norm: We denote the L1-norm with ∥ ⋅ ∥1 : ℝ
n →  ℝ

such that for a vector v =  (v1, v2, … ,  vn)

•

n

∥v∥1 =  ∑ |vi|
i=1

Example: Let v = ∈ ℝ3, then

∥v∥1 =  (1 +  3 +  2) =  6

https://en.wikipedia.org/wiki/Lp_space 20

1
−3
2
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L2-Norm

•

•

Norm: measure of the “length” of a vector

L2-Norm: We denote the L2-norm with ∥ ⋅ ∥2 : ℝ
n →  ℝ such that for

•
Example: Let v =

a vector v =  (v1, v2, … ,  vn)

∥v∥2 =

∈ ℝ3, then

∥v∥2 = (12 +  (−3)2 +  22) =  14

https://en.wikipedia.org/wiki/Lp_space 21

1
−3
2

෍

𝑖=1

𝑛

(vi)
2
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Loss functions

• A loss function is a function that takes as input two vectors 
and as output measures the distance between these two

uses a norm to measure the distance

L1-Loss uses the L1-norm, L2-Loss uses the L2-norm

• L1-Loss: The L1-Loss between two vectors v, w ∈ ℝn is

•

1 1defined as L (v, w) =  ∥v −  w∥ =  Σn
i=1|vi −  wi |

L2-Loss: The L2-Loss between two vectors v, w ∈ ℝ isn

defined as

L2(v, w) =  ∥v −  w∥2 = (v1 −  w1)2 +  …  +  (vn −  wn)2

22I2DL: Prof. Niessner



Outlook

17% cat

13% dog

70% deer

Loss
Neural 

Network

(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 23I2DL: Prof. Niessner
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Outlook

The elements of the matrix are called 

weights and they determine the prediction 

of our network.

17% cat

13% dog

70% deer

Loss
W ∈ ℝ

(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 24

W ⋅ x
n×m
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Outlook

How can we get an accurate matrix 

to minimize the loss?

17% cat

13% dog

70% deer

Loss
W ∈ ℝ

(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 25

W ⋅ x
n×m
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Outlook

Gradient Descent: Method to approximate 

the best values for the weights

17% cat

13% dog

70% deer

Loss
W ∈ ℝ

(http://www.isfpga.org/fpga2017/slides/D2_S1_02.pdf) 26

W ⋅ x
n×m
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Calculus
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Derivatives

• Well known: Scalar derivatives, i.e. derivatives of 

functions f : ℝ →  ℝ
• Matrix calculus: Extension of calculus to higher

dimensional setting, i.e. functions like f : ℝn →  ℝ, 

f : ℝ →  ℝn, f : ℝn →  ℝm and f : ℝn×m →  ℝ for 

n, m ∈  ℕ
• Actual calculus we use is relatively trivial, but the notation 

can often make things look much more difficult than they 

are.

I2DL: Prof. Niessner
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Overview

Setting Derivative Notation

f : ℝ →  ℝ Scalar derivative f′(x)

f : ℝn →  ℝ Gradient ∇ f  (x)

f : ℝn×m →  ℝ Gradient ∇ f  (x)

f : ℝn →  ℝm
Jacobian Jf

I2DL: Prof. Niessner



Scalar derivatives

•

•

• Derivative: Derivative of a function at a chosen input 

value is the slope of the tangent line to the graph of the 

function at that point.

df
Setting: f : ℝ →  ℝ

Notation: f′(x) or

dx

https://en.wikipedia.org/wiki/Derivative#/media/File:Tangent_to_a_curve.svg 31I2DL: Prof. Niessner



Derivation Rules
Common functions Derivative

f (x) =  c for c ∈ ℝ f′(x) =  0

f (x) =  x f′(x) =  1

f (x) =  xn for n ∈ ℕ f′(x) =  n ⋅ xn−1

f (x) =  ex f′(x) =  ex

f (x) =  ln(x) f′(x) =  
1

x

f (x) =  sin(x) f′(x) =  cos(x)

f (x) =  cos(x) f′(x) =  −  sin(x)

32I2DL: Prof. Niessner



Derivation Rules
Rule Function Derivative

Sum rule f (x) +  g(x) f′(x) +  g′(x)

Difference rule f (x) −  g(x) f′(x) −  g′(x)

Multiplication by 

constant
c ⋅ f (x) c ⋅ f′(x)

Product rule f (x) ⋅ g(x) f′(x) ⋅ g(x) +  f (x) ⋅ g′(x)

Quotient rule
f (x)

g(x)

f′(x) ⋅ g(x) −  f (x) ⋅ g′(x)

(g(x))2

Chain rule f (g(x)) f′(g(x)) ⋅ g′(x)

33I2DL: Prof. Niessner



Multivariate functions f : ℝn →  ℝ

Multivariate Function
f : ℝn →  ℝ

Gradient
∇ f  : ℝn →  ℝn

∂f(x)

∂x1

∂f(x)

∂x2

⋮
∂f(x)

∂xn

Partial derivative

∇ f  : x →  ∇ f  (x) =

34I2DL: Prof. Niessner



Multivariate functions f : ℝn×m →  ℝ

Multivariate Function
f : ℝn×m →  ℝ

Gradient

∇ f  : ℝn×m →  ℝn×m

∇ f  : x →  ∇ f  (x) =

…
∂f(x)

∂x12

∂f(x)

∂x22
…

∂f(x)

∂x1m

∂f(x)

∂x2m

∂f(x)

∂x11

∂f(x)

∂x21

⋮
∂f(x)

∂xn1

∂f(x) ∂f(x)

∂xn2 
…  

∂xnm

35I2DL: Prof. Niessner



Gradient – Example 1

𝑓(𝑥, 𝑦) =  3𝑥2𝑦 ∇𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 

 𝜕

𝜕𝑥
3𝑦𝑥2 =  3𝑦

𝜕

𝜕𝑥
𝑥2 =  3𝑦2𝑥 =  6𝑦𝑥

36https://www.zhihu.com/question/36301367

=  [6𝑦𝑥, 3𝑥2]

[            ]

∇𝑓(𝑥, 𝑦) =
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 [            ]

𝜕

𝜕𝑦
3𝑥2𝑦 = 3𝑥2 𝜕

𝜕𝑦
𝑦 = 3𝑥2

𝜕

𝜕𝑦
= 3𝑥2 × 1 = 3𝑥2

I2DL: Prof. Niessner
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Gradient – Example 2

𝑔(𝑥, 𝑦) =  2𝑥 +  𝑦8

=
𝜕𝑔(𝑥, 𝑦) 𝜕2𝑥 𝜕𝑦8

𝜕𝑦 𝜕𝑦 
+   
𝜕y

=  0 +  8𝑦7 =  8𝑦7

=
𝜕𝑔(𝑥, 𝑦) 𝜕2𝑥 𝜕𝑦8

𝜕𝑥 𝜕𝑥 
+   
𝜕𝑥

𝜕𝑥
=  2 

𝜕𝑥 
+  0 =  2 ×  1 =  2

∇𝑔(𝑥, 𝑦) =  [2, 8𝑦7]

37https://www.zhihu.com/question/36301367I2DL: Prof. Niessner
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Vector-valued functions

Vector-Valued 

function
Jacobian Matrix

f : ℝn →  ℝm

Jf : ℝn →  ℝm×n

x →  Jf (x) =

…
∂f1(x)

∂x1

∂f2(x)

∂x1

⋮
∂fm(x)

∂x1

∂f1(x)

∂x2

∂f2(x)

∂x2

⋮
∂fm(x)

∂x2

…

⋱

…

∂f1(x)

∂xn

∂f2(x)

∂xn

⋮
∂fm(x)

∂xn

f : x =

x1 

x2

⋮
xn

⟶

f1(x)

f2(x)

⋮

fm(x)

38I2DL: Prof. Niessner



Jacobian Matrix – Example 3

where

Jf (x) =

Assume that f : ℝ2 →  ℝ2 with f (x, y) =

f1(x, y) =  3x2y and f2(x, y) =  2x +  y8.

Calculate Jacobian matrix:

∂f1(x, y) ∂f1(x, y)

∂x ∂y

2

∂x

∂f (x, y) ∂f (x, y)2

∂y

39

𝑓1(𝑥, 𝑦)
𝑓2(𝑥, 𝑦)

=  
6𝑥𝑦 3𝑥2

2 8𝑦7
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Single Variable Chain Rule

Setting: We are given the function h(x) = f(g(x)).

Task: Compute the derivative of this function with chain rule.

2. Compute individual derivatives: and

1. Introduce the intermediate variable: Let u =  g(x) be the intermediate 

variable.

3. Chain rule:

4. Substitute intermediate variables back

=
df dg du

du dx dx

= ⋅
dh df du

dx du dx

40I2DL: Prof. Niessner



Single Variable Chain Rule: Example

Example: Let h(x) =  sin(x2).

Task: Compute the derivative of this function with chain rule.

Observation: Here, h(x) =  f (g(x)) with f (x) =  sin(x) and g(x) =  x2.

1. Introduce the intermediate variable: Let u =  x2 be the intermediate variable.

2. Compute individual derivatives: =  cos(u) and

3. Chain rule:

4. Substitute intermediate variables back:

df 

du

dg du

dx dx
= =  2x

dh df du

dx du dx
= ⋅ =  cos(u) ⋅ 2x

dh 

dx

41

2=  cos(u) ⋅ 2x =  cos(x ) ⋅ 2x
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Total Derivative Chain Rule

General Formalism:

∂f (x, u1(x), … ,  un(x)) 
=  

∂f 
+ 

∂f

∂x ∂u2 ∂x

∂u1 ∂f ∂u2
+ +  …  +

∂f ∂un

∂un ∂x∂x ∂u1 ∂x

∂f
=

∂x
+

∂f ∂ui

i

42

∂u ∂x
෍

𝑖=1

𝑛
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Probability space (Ω, ℱ ,  ℙ)

•

•

•

A probability space consist of three elements (Ω, ℱ ,  ℙ):

Sample space Ω: The set of all outcomes of a random experiment.

Event Space ℱ :  A set whose elements A ∈  ℱ  (called events) are subsets of Ω. 

Probability measure ℙ: A function ℙ : ℱ  →  [0, 1] that satisfies the following 

three properties:

1. ℙ(A) ≥  0 for all A ∈ ℱ

2. ℙ(Ω) =  1

The probability space provides a formal model of a random experiment.

n n

i=1 i=1

3. ℙ ڂAi =  ∑ ℙ(Ai) for n ∈ ℕ and disjoint events A1, A2, …An ∈ ℱ(    )

I2DL: Prof. Niessner



Probability space: Example

•

•

•

A probability space consists of three elements: (Ω, ℱ ,  ℙ)
Sample space Ω: The set of all outcomes of a random experiment.

Event Space ℱ :  A set whose elements A ∈ ℱ  (called events) are subsets of Ω.

Probability measure ℙ: A function ℙ : ℱ  →  [0, 1] that satisfies the following three properties: (…)

Example: Tossing a six-sided die

• Sample space: Ω =  {1,2,3,4,5,6}
• Event space: ℱ1  =  {∅,  Ω}, ℱ2  =  𝒫(Ω),

ℱ3  =  {∅,  A1 =  {1,3,5}, A2 =  {2,4,6}, Ω =  {1,2,3,4,5,6}}

• Probability measure ℙ : ℱ  →  ℝ with ℙ(∅) =  0, ℙ(Ω) =  1 and in the case of ℱ3  we know that

ℙ(A1) +  ℙ(A2) =  1.

• Example event space ℱ3  : Possible probability measure are

1
1. ℙ1(A1) =

2. ℙ2(A1) =

=  ℙ1(A2)

and ℙ2(A2) = .

2
1

4

3

4
47https://images.app.goo.gl/GMfyoXi9trZgqecQ8I2DL: Prof. Niessner



Random variable

•

• A random variable is a function defined on the 

probability space which maps from the sample space 

to the real numbers, i.e.

X : Ω  →  ℝ.

We distinguish between discrete and continuous

random variables.

48I2DL: Prof. Niessner



• A random variable is a function defined on the probability space which maps from 
the sample space to the real numbers, i.e. X : Ω →  ℝ.

Example: Tossing a fair six-sided die

1
• Underlying experiment: Ω =  {1,2,3,4,5,6}, ℱ  =  𝒫(Ω), ℙ({x}) =  

6 
∀x ∈  Ω

• Random variable : Number that appears on the die, X : Ω →  {1,2,3,4,5,6}
⟹  discrete random variable

• Example: One element in Ω is =  4. Then X(ω) =  4.

• Probability measure ℙ:

ℙ(X =  4) =  ℙ({ω ∈  Ω : X(ω) =  ω =  4}) =  ℙ({4}) =
1

6

Random variable

49https://images.app.goo.gl/GMfyoXi9trZgqecQ8
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Random variable
• A random variable is a function defined on the probability space which maps from the 

sample space to the real numbers, i.e. X : Ω →  ℝ.

Example: Flipping a fair coin two times

• Underlying experiment: Ω =  {(H, H ), (H, T ), (T, H ), (T, T )},

1
ℱ  =  𝒫(Ω) and ℙ({ω}) =  ∀ω ∈  Ω

4
• Random variable : number of heads that appeared in the two flips, X : Ω →  {0,1,2}

⟹  discrete random variable

• Example: One element in Ω is ω =  (T, H ). Then X(ω) =  1.

• Probability measure ℙ:

ℙ(X =  1) =  ℙ({ω ∈  Ω : X(ω) =  1}) =  ℙ({(H, T ), (T, H )}) =
1

2

50

discrete
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Random variable

• A random variable is a function defined on the probability space which 
maps from the sample space to the real numbers, i.e. X : Ω  →  ℝ.

Example: radioactive decay

• Underlying experiment: Ω  =  ℝ≥0, ℱ  =  ℬ(Ω), ℙ =
measure

is the Lebesgue

• Random variable : indicating amount of time that it takes for a radioactive 

particle to decay, X : ℝ≥0 →  ℝ≥0 ⟹  continuous random variable

• Probability measure ℙ: is defined on the set of events ℱ  and 

is now used for random variables as follows:

ℙ(a ≤  X ≤  b) =  ℙ({ω ∈ Ω  : a ≤  X(ω) ≤  b})
Continuous

51I2DL: Prof. Niessner



52

Probability measures

⟹  specify the probability measures with alternative 

functions (CDF, PDF and PMF)

Random 

Variable

Discrete

Cumulative distribution function 

(CDF)

FX(x) =  ℙ(X ≤  x)

Probability mass function 

(PMF)
pX(x) =  ℙ(X =  x)

Continuous

Cumulative distribution function 

(CDF)
FX(x) =  ℙ(X ≤  x)

Probability distribution 

function (PDF)

I2DL: Prof. Niessner



Cumulative Distribution Function

• A cumulative distribution function (CDF) of a random variable is 
a function FX : ℝ →  [0,1] which is defined as

FX(x) =  ℙ(X ≤  x)
• Properties: Per definition, it satisfies the following properties:

1. 0 ≤  FX(x) ≤  1
2. lim FX(x) =  0

x→−∞

3. lim FX(x) =  1
x→∞

4. ∀x ≤  y ⟹  FX(x) ≤  FX(y)

A sample CDF

[Figure: http://cs229.stanford.edu/section/cs229-prob.pdf]  53I2DL: Prof. Niessner
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Discrete Case: Probability Mass Function

• The probability mass function of a random variable is a 

function pX : Ω →  ℝ defined as

pX(x) =  ℙ(X =  x)

• Properties: Again, we can derive some properties:

1. 0 ≤  pX(x) ≤  1

2. ∑ pX(x) = 1

A sample PMF

54[Figure: https://en.wikipedia.org/wiki/Probability_mass_function]

x∈Ω
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Discrete Example: Sum of 2 Dice Rolls
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Continuous case: Probability Density Function

• Continuous case: For some continuous random variables, the CDF FX(x) 
is differentiable everywhere. Then we define the probability density function 
as the function fX(x) : Ω  →  ℝ with

• Properties:

1. fX(x) ≥  0

Xf (x) =
dF (x)X

dx

2. fX(x)dx =  1

3. fX(x)dx =  FX(b) −  FX(a)

Note: the value 

of a PDF at 

any given point 

x is not the 

probability of 

that event!

56[Figure:https://www.math24.net/probability-density-function/]
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Expectation of a random variable
• Idea: “weighted average” of the values that the random variable 

can take on

• Discrete setting: Assume that X  is a discrete random variable
is given bywith PMF pX(x). Then the expectation of X

𝔼[X] =  ∑ x ⋅ pX(x)

• Continuous setting: Assume that X is a continuous random 

variable with PDF fX(x). Then the expectation of is given by

𝔼[X] =  x ⋅ fX(x) dxන

−∞

∞

x∈Ω

I2DL: Prof. Niessner



Expectation: Example

Then the expectation of X

• Discrete setting: Assume that X is a discrete random variable with PMF pX(x).

is given by

𝔼[X] = ∑ x ⋅ pX(x)
x∈Ω

Example: Tossing a six-sided die

Ω  =  {1,2,3,4,5,6}
X: represents the outcome of the toss

X
6

p (x) =  ℙ(X =  x) =  
1 

∀x ∈  Ω

x∈Ω

1 1 1 1
𝔼[X ] =  ∑ x ⋅ pX(x) =  1 ⋅ 

6 
+  2 ⋅ 

6 
+  …  +  5 ⋅ 

6 
+  6 ⋅ 

6 
=  3.5

https://images.app.goo.gl/GMfyoXi9trZgqecQ8 58I2DL: Prof. Niessner
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Expectation of a random variable

Properties: We encounter several important properties 

for the expectation, i.e.

1. 𝔼[a] =  a for any constant a ∈  ℝ
2. Linearity: 𝔼[aX +  bY ] =  a ⋅ 𝔼[X] +  b ⋅ 𝔼[Y ] for any 

constants a, b ∈  ℝ

I2DL: Prof. Niessner



Variance of a random variable
• Idea: The variance of a random variable is a measure 

how concentrated the distribution of a random variable

is around its mean.

• Definition: The variance is defined as 

Var(X) =  𝔼[(X −  𝔼[X])2]

=  𝔼[X2] −  𝔼[X]2

https://en.wikipedia.org/wiki/Normal_distribution 60I2DL: Prof. Niessner



Variance of a random variable
Definition: The variance is defined as Var(X ) =  𝔼[(X −  𝔼[X ])2] =  𝔼[X2] −  𝔼[X ]2

Example: Tossing a fair six-sided die

Ω =  {1,2,3,4,5,6}, X: represents the outcome of the toss

𝔼[X ] =  3.5, 𝔼[X ]2 =  12 
1

X 6
p (x) =  ℙ(X =  x) =  

1 
∀x ∈ Ω

4
2𝔼[X ] = ∑

x∈Ω

2
Xx ⋅ p (x 2) =  1 ⋅

1 1

6
2 2+  2 ⋅ +  …  +  5 ⋅

6

1

6
2+  6 ⋅

1

6
=  15

1

6

2 2 1

6
Var(X ) =  𝔼[X ] −  𝔼[X ] =  15 −  12 =

1 35

4 12

https://images.app.goo.gl/GMfyoXi9trZgqecQ8 61

≈  2.91
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Variance of a random variable

• Properties: The variance has the following 

properties, i.e.

1. Var(a) =  0 for any constant a ∈  ℝ

2. Var(a ⋅ X +  b) =  a2 ⋅ Var(X )

https://en.wikipedia.org/wiki/Normal_distribution 62I2DL: Prof. Niessner



Distribution
Parameter & 

Notation
PDF or PMF Mean Variance Illustration

Bernoulli 

distribution 

(Discrete)

Binomial 

distribution 

(Discrete)

Uniform 

distribution 

(Continuous)

Normal 

distribution 

(Continuous)

𝔼[X ] =  n ⋅ p

𝔼[X ] =  μ
X ∼ 𝒩(μ, σ2)

X ∼ Ber( p) 

0 ≤  p ≤  1

X ∼ Bin(n, p)

n ∈ ℕ, p ∈ [0,1]

X ∼ U(a, b)

− ∞  <  a <  b <  ∞

2μ ∈ ℝ, σ  ∈ ℝ≥0

1

12
Var(X ) = (b −  a)2

Var(X ) =  σ2

Var(X ) =  np(1 −  p)

Var(X ) =  p(1 −  p)
pX (k) =  pk(1 −  p)1−k

1

2
𝔼[X ] = (a +  b)

X

n

k(  )
kp (k) = p (1 −  p)n−k

fX (x) =
1  

(b −  a)

{ 0

x ∈ [a , b]

else

fX (x) =
1

σ 2π
e

−  1 σ2 ( )
x −  μ 2

𝝁

𝝈

a b

0 n

0

63

1

p

1-

Standard Probability Distributions

𝔼[X ] =  p
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References

• http://cs229.stanford.edu/section/cs229-prob.pdf

– Comprehensive Probability Review – recommended!

• https://stanford.edu/~shervine/teaching/cme-106/cheatsheet- 

probability

– Quick Overview

• https://www.deeplearningbook.org/contents/prob.html

– Another great resource. Also covers information theory basics.
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