Introduction to Deep
Learning (12DL)
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Basic Notation

« Vector: We call an element of [R” a vector with n entries.

. Elements of a vector: The ith element of a vector v € R" is denoted
by v; € R.

« Matrix: We call an element of R”*" a matrix with n rows and m
columns.

« Elements of a matrix: For 4 € R we denote the element at the
ith row and jth column by 4;; € RR.

* Transpose: The transpose of a matrix results from “flipping” rows and
columns. We denote the transpose of a matrix 4 € R™" by

AT € R™" Similarly, we use transposed vectors.
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Vector

An n-dimensional vector describes an element in an n-dimensional space

(V1)
V2
Yy = : = Rn
\%
\ ")
Vector " . Scalar
Operations: Addition Subtraction Multiplication Dot Product
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Vector

Vector Operations

Operations: Addition

Fora, b € R"we have

a+ b=
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(al + bl\

a + by

\an + bn)

Subtraction

Scalar
Multiplication

Dot Product

e R”




Vector Operations

Vector
Operations:

Addition

Fora, b € R"” we have

a-b
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(al — bl\
a, - b,
(40~ bn)

Scalar
Multiplication

Dot Product




Vector
Operations:

Vector Operations

Fora € R”, ¢ € R we have
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Addition Subtraction
(C y al\
(G )

‘a = : e R”
S

Scalar
Multiplication

Dot Product




Vector Operations

Vector Addition Subtraction Scalar

Operations: Multiplication | [edtedbid

Definition: For a, b € R”, the dot product is defined as follows:

a-b=al-b
=ay-by+ay, b+ .. +a, b,
= ?=1Cll"bl' ER

I2DL: Prof. Niessner
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Vector
Operations:

Properties:
« Commutative:a-b=b-a
« Geometric interpretation:

a-b=lall- bl - cos(V)

Vector Operations

Addition

Subtraction

Scalar
Multiplication

» Orthogonality: Two non-zero vectors are
orthogonal to each other & a-b =0
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Dot Product

0 = arccos(z+y/1x11Y1)
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Vector Operations

Vector " . Scalar

Operations: Addition Subtraction | | pultiplication | [ERERiE
Properties:
« Commutative:a-b = b-a WV = [@]|¥|cosf = (4)(4) cos 180° = —16

« Geometric interpretation: wew = —10
a-b=llal-lbl - cos(0)

* Orthogonality: Two non-zero vectors are

orthogonal to each other & a-b =0
(%,')—0_9
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Matrix

A matrix A € R™" is denoted as

ad11 d1? A1m
o = dr1 dpp .. Ao, c Rxm
d,1 4,7 Ay
Matrix Matrix-vector Matrix-matrix Hadamard
Operations: Multiplication Multiplication Product

I2DL: Prof. Niessner
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Matrix

Matrix-vector

Matrix
Operations: Multiplication

* Multiplication of matrix with a vector is defined as follows:

a1 dag
az1 dpp
ForAe R"mbe R"A4-b= )

ay1 aAp2

Matrix-matrix
Multiplication

Hadamard
Product

ay,\ (P1) aiq
Ay b; azq

a
o by ) an1

'b1+ alz'b2+ +a1m-bm
'b1+ a22-b2+ +Clzm'bm

'b1+ anz'b2+ +anm-bm

Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.

= 4 -b = ¢
nxm  mx1l  nx1
1 2 1
Example: 4 € R¥?2 b € R?with4=[ 3 4 |andb = 2 = |3
' 5 6 3 5
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Matrix Operations

Matrix Matrix-vector Matrix-matrix Hadamard
Operations: Multiplication Multiplication Product

« Similar, the multiplication of two matrices with each other is defined as follows:
For4 € R™m B € R™ we have

bll blz T bll

i1 412 - Qi €11 €12 - Cy
dz1 dz2 - d2m by1 by ... Dby €21 C22 - O

A-B=1]. . A N ) J1=1. . ) .| € R™ where
ap1 A2 - Aup b1 b,z . b, Cn1 Cn2 - Cpl

m
cj= X @by = an byt ag byt e+ iy by
k=1
« Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices 4 € R B € R™" we
haved-B # B- A
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Matrix
Operations:

Matrix Operations

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

» The Hadamard product is the element wise product of two matrices. For
two matrices of the same dimension 4, B € R it is given by

(all

A OB = 0.21

\anl

alm\ (bll
QDm | by1
anm) b 1

bim) (ay1- b1y

bam azy -+ by

bnm) \n1 b1

A - blm\

Aoy me

Aym * bnm)

For all matrix operations, it is important to check the dimensions!
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€ Rw
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Tensor

 Definition: A tensor is a multidimensional array and a generalization of the
concepts of a vector and a matrix.

4 19 8
(1) : 16 3 5
Row Vector Column Vector
SCALAR (shape 1x3) (shape 3x1) MATRIX

TENSOR

I2DL: Prof. Niessner 17



Tensors in Computer Vision

color image is 3rd-order tensor

28 pixels (height)

Tensors are used to
represent RGB

=
%

images. b =l
Hx Wx RGB ‘o

(((

Source: https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

I2DL: Prof. Niessner
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Norm

 Norm: measure of the “length” of a vector

 Definition: A norm is a non-negative function || - || : "> R
which is defined by the following the properties for elements
v,weE V.

1. Triangle inequality: |[v + w|| < |Iv]l + [Iwl|

2. la - vl = a- |lv]l for a scalar

3.1Ilvlil = Oifandonlyif =0
(*V'is a vector space over a field IF; in our case we have V' = R")
Remark: Every such function defines a norm on the vector space.
Examples: L1-norm, L2-norm
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L1-Norm

 Norm: measure of the “length” of a vector
« L1-Norm: We denote the L1-norm with || -

such that for a vector v = (v, vy, ..., V,)

n
vily = 2% |vil

i=1

1

Example: Let v = (—3> € R3, then
2

Ivil;= (1+3+2)=6

I2DL: Prof. Niessner 20



L2-Norm

* Norm: measure of the “length” of a vector

« L2-Norm: We denote the L2-norm with || - ||, : R” — R such that for
avector v = (vy, Vg, .., V) —

vl =\/ZW I
i=1 i

1 0
Example: Let v = (—3> € R3, then
[ ] 2 -0.5

Ivil, = \/ (12 + (—3)2 + 22) — \/ﬁ s

I2DL: Prof. Niessner 21




| oss functions

« Aloss function is a function that takes as input two vectors
and as output measures the distance between these two
uses a norm to measure the distance

L1-Loss uses the L1-norm, L2-Loss uses the L2-norm
« L1-Loss: The L1-Loss between two vectors v, w € R" is
definedas L(v,w) = llv-wll{ = Z_, |v; - w; |
« L2-Loss: The L2-Loss between two vectors v, w € R" is
defined as

Loy(vyw)=llv-wl, = \/(vl - w)+ o+ (v, - w)?
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Outlook

Neural 17% cat
Network >13% dog — ’m
70% deer

TENSOR
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Outlook

W c X 17% cat
ﬂ — } » 13% dog
’ we R™" 70% deer

The elements of the matrix  are called
weights and they determine the prediction
of our network.

I2DL: Prof. Niessner (http://www.isfpga.org/fpga2017/slides/D2 _S1 02.pdf) 24
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Outlook

<
oﬂ W c X 17% cat
d — } » 13% dog
’ we R"™™ 70% deer

How can we get an accurate matrix
to minimize the loss?

I2DL: Prof. Niessner (http://www.isfpga.org/fpga2017/slides/D2 _S1 _02.pdf) 25
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Outlook

<
oﬂ W c X 17% cat
ﬂ — } » 13% dog
’ we R™" 70% deer

Gradient Descent: Method to approximate
the best values for the weights

I2DL: Prof. Niessner (http://www.isfpga.org/fpga2017/slides/D2 _S1 _02.pdf) 26
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Calculus
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Derivatives

« Well known: Scalar derivatives, i.e. derivatives of
functionsf: R - R

* Matrix calculus: Extension of calculus to higher
dimensional setting, i.e. functions like f : R” — [,
i R->R",f:R"> R"andf: R"™" — R for
n,me€ N

« Actual calculus we use is relatively trivial, but the notation

can often make things look much more difficult than they
are.

I2DL: Prof. Niessner
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Overview

Setting Derivative Notation
JiR->R Scalar derivative f()
fiR"=> R Gradient Vf(x)
f:R™m - R Gradient V1(x)
fi R = R™ Jacobian Jr

30



Scalar derivatives

. Setting: f: R —> R
- df
Notation: f'(x)or ~_

* Derivative: Derivative of a function at a chosen input
value is the slope of the tangent line to the graph of the
function at that point.

I2DL: Prof. Niessner 31



Derivation Rules
f(x)=cforce R f(x)=0
Jx)=x =1
f(x)=x"forne N f)=n-xn1
Jx)=e f(x) = ¢
£6) = In(x) £ = %

f(x) = sin(x)

f(x) = cos(x)

f(x) = cos(x)

f(x) = - sin(x)

I2DL: Prof. Niessner
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Derivation Rules

Sum rule Sx) + glx) S )+ g(x)
Difference rule | f(x) - g(x) f(x) - ')
Multiplication by . .
constant ¢ /) ¢/
Productrue | f(¥) - g(x) S(x)-gx) + fx) - g'(x)
Quotient rule o) 1) 80~ /1) g )
g(x) (g(x))?
Chain rule flg)) /()£ ™)

I2DL: Prof. Niessner
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Multivariate functions / : R” — R

Multivariate Function Gradient
f:R"> R Vf:R"—> R
(af(x)\
Ox]
of(x)

Vi:x—> Vf(x)=| o

I2DL: Prof. Niessner
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Multivariate functions f: R”" — R

Multivariate Function
f:R™ —> R

I2DL: Prof. Niessner

Gradient

VS Rmm — Rwom

Vi:x-> Vf(x) =

(0fx)  ofy)
0x11 0x12
doflx) 9f(x)
0x721 0x77
ofx)  0f(x)
\ 0X1 0x,2

%) )

axlm

x)

ame

%)
axnm )
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Gradient — Example 1

f(xy) of(xy)

Fxy) = 3x%y Vﬂ%yy=[

93042 = 3y 9,2 = _
axSyx = 3y X = 3y2x = 6yx

)
oy

Surface:
z=f(x,y)

af(y) of(xy)
ox 0y

Vﬂnm=[

https://www.zhihu.com/question/36301367

O a2y 2,29 0 3,20 _ 3.2, 12 2,42
ay3xy—3x ayy—?mc = 3x“x1=3x

= [6yx, 3x7]



http://www.zhihu.com/question/36301367

Gradient — Example 2

gxy)=2x+y°

P 8 d0x
g(x,y)=62x+ay=2_+0:2x1=2
Ox ox = ox  Ox

ag(x, 02x  0y8
gy) _ 0Zx [ OVT_ 1, g7 = gy
dy dy 0y

Surface:

Gl Vg(x,y) = [2,8y]

12DL: Prof. Niessner https://www.zhihu.com/question/36301367 37
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Vector-valued functions

Vector-Valued
function

f:R" > R™

(x1) (f1())
X2 fa(x)

fix=].]|—

) e,

I2DL: Prof. Niessner

Jacobian Matrix

x = J(x)

Jp: RM — R

(

\

0f1(x)

0f1(x)

axl

0f2(x)

axz

0f2(x)

Bxl

0fm(x)

axz

0fm(x)

axl

axz

i) )

0x,,

0f2(x)
0x,,

0fn(x)
0x,, )
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Jacobian Matrix — Example 3

Assume that /: R? —» R? with f(x,) = <f1(X; Y)> where
f2(x,y)
f1(x,¥) = 3x%y and f5(x,7) = 2x + )8,

Calculate Jacobian matrix:

(ficy)  Ofilny) )

Ox dy 6x y 3X2
Jx) = -
() oY) 0hxy) ( 2 8y7>

\ 0x dy )

I2DL: Prof. Niessner



Single Variable Chain Rule

Setting: We are given the function h(x) = f(g(x)).
Task: Compute the derivative of this function with chain rule.

1. Introduce the intermediate variable: Let u = g(x) be the intermediate

variable.
df dg du
2. Compute individual derivatives: — and =
du dx dx
dh  df du
3. Chain rule: = :
dc« du dx

4. Substitute intermediate variables back

I2DL: Prof. Niessner
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Single Variable Chain Rule: Example

Example: Let i(x) = sin(x?).
Task: Compute the derivative of this function with chain rule.
Observation: Here, h(x) = f(g(x)) with f(x) = sin(x) and g(x) = x°.

1. Introduce the intermediate variable: Let # = x? be the intermediate variable.

df dg du
2. Compute individual derivatives: — = cos(u) and = = 2x
du dx dx
dh df du
3. Chain rule: = - = cos(u) - 2x
du dx 4
4. Substitute intermediate variables back: Fr cos(u) - 2x = cos(x?) - 2x

I2DL: Prof. Niessner
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Total Derivative Chain Rule

General Formalism:

of(x, ug(x), ..., u,(x)) Qf_l_ af Juy  Of Oup df Ou,
= + + ...+
0x Ox Ouq Ox  Oduy Ox du,, Ox

n

_of df Ou;
-a*za—%a

i=1

I2DL: Prof. Niessner 42
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Probability space (Q, F, P)

A probability space consist of three elements ({0, F, IP):
. Sample space (): The set of all outcomes of a random experiment.

. Event Space F: A set whose elements 4 € F (called events) are subsets of ().

. Probability measure P: A function IP : F — [0, 1] that satisfies the following
three properties:

1.P(4)=2 Oforall4 € F
2.P(Q) =1

n n
3. IP( UA,-) = Y IP(4,) for n € N and disjoint events A1, A, ...A, € F
i=1 i=1

I2DL: Prof. Niessner
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Probability space: Example

A probability space consists of three elements: ({1, F, P)
Sample space (): The set of all outcomes of a random experiment.
Event Space F: A set whose elements 4 € F (called events) are subsets of ().
Probability measure IP: A function P : F — [0, 1] that satisfies the following three properties: (...)

Example: Tossing a six-sided die
- Sample space: () = {1,2,3,4,5,6}
- Eventspace: F{ = {0, Q}, F, = P(Q),
Fi={0, 4, = {1,3,5}, 4, = {2,4,6},Q = {1,2,3,4,5,6}}
* Probability measure P : F — R with P(@) = 0, P(2) = 1 and in the case of F 3 we know that
P(4,) + P(4,) = 1.
« Example event space F 3 : Possible probability measure are

1
1. Py(44) = 5 = P1(42)

1 3
2. Pz(Al) = Z and Pz(Az) = Z
I2DL: Prof. Niessner
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Random variable

« Arandom variable is a function defined on the

probability space which maps from the sample space
to the real numbers, i.e.

X:0 - R

* We distinguish between discrete and continuous
random variables.

I2DL: Prof. Niessner
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Random variable

Example: Tossing a fair six-sided die @

1
Underlying experiment: () = {1,2,3,4,5,6}, F = P(Q), P({x}) = g‘v’x €

Random variable : Number that appears on the die, X : 1 = {1,2,3,4,5,6}
— discrete random variable

Example: One elementin is = 4. Then X(w) = 4.

Probability measure [P:

P(X=4)= P{w € Q: X(0) = w = 4}) = P({4}) = %

I2DL: Prof. Niessner 49



Random variable

Z

Example: Flipping a fair coin two times N
« Underlying experiment: ) = {(H,H),(H, T),(T,H), (T, T)}, l

F = P(Q) and P({w}) = %\m € Q

- Random variable : number of heads that appeared in the two flips, X : 0 — {0,1,2}
— discrete random variable

- Example: One elementin Q is w = (7, H). Then X(w) = 1.
 Probability measure [P:

PX= 1) = P({o € 0: X(0) = 1)) = PU(A,T), (LH))) = -

I2DL: Prof. Niessner 50



Random variable

Example: radioactive decay
- Underlying experiment: 1 = R.,, F = B(Q), P = isthe Lebesgue
measure
« Random variable : indicating amount of time that it takes for a radioactive
particle to decay, X : R,g & R,7 = continuous random variable

* Probability measure IP: is defined on the set of events F and

is now used for random variables as follows:
Pla<s X< b)=PHweE Q:a< X(w) < b})

I2DL: Prof. Niessner 51



Probability measures

— specify the probability measures with alternative
functions (CDF, PDF and PMF)

Random
Variable

Cumulative distribution function  Probability mass function

Discrete (CDF) (PMF)
Fy(x)= P(X< x) px(x) = P(X= x)
Cumulative distribution function Probability distribution
Continuous (CDF) function (PDF)

Fyl¥) = P(X < %)

I2DL: Prof. Niessner 52



Cumulative Distribution Function

* A cumulative distribution function (CDF) of a random variable s
a function F'y : R = [0,1] which is defined as

Fyx) = P(X < x)
* Properties: Per definition, it satisfies the following properties:

1.0 Fy{x) = 1 '
2. lim Fy(x)=0
3. lim Fy(x) = 1

X—00 I
4. Vx <y = Fyx) < Fy(y) |

ob=——=" S ) ) ) . , ) .
5 4 -3 -2 -1 0 1 2 3 4 5

A sample CDF

I2DL: Prof. Niessner [Figure: http://cs229.stanford.edu/section/cs229-prob.pdf] 53
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Discrete Case: Probability Mass Function

« The probability mass function of a random variable is a
function py : 0 > R defined as

px(x) = P(X= x)
* Properties: Again, we can derive some properties:

1.0 py(x) = 1 051
2. ZQPX(X) =1 | 0.3
X€E
0.2 I I
T3 7
A sample PMF

12DL: Prof. Niessner [Figure: https://en.wikipedia.org/wiki/Probability mass_function] 54



Discrete Example: Sum of 2 Dice Rolls

0,18
0,14

0,09
0,05 I |
0,00 I

2 3 4

I2DL: Prof. Niessner
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6

PMF
7 8 9 10 11 12

1,00

0,75

0,50

0,25

0,00

CDF

8 9 10 1 12
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Continuous case: Probability Density Function

- Continuous case: For some continuous random variables, the CDF F'y(x)
is differentiable everywhere. Then we define the probability density function

as the function fy{(x) : 1 = R with

dFy(x
)= =

dx

* Properties:

1. fv(x) 2 0
2. [ fil¥)dx = 1

3. [ f@)dx = Fx(b) - Fy(@)

-
X

ol a b

12DL: Prof. Niessner [Figure:https://www.math24.net/probability-density-function/] 56



http://www.math24.net/probability-density-function/
http://www.math24.net/probability-density-function/
http://www.math24.net/probability-density-function/
http://www.math24.net/probability-density-function/
http://www.math24.net/probability-density-function/

Expectation of a random variable

* ldea: “weighted average” of the values that the random variable

can take on
* Discrete setting: Assume that X is a discrete random variable
with PMF py{x). Then the expectation of X is given by

E[X] = 3 x - pal2)

« Continuous setting: Assume that X'is a continuous random
variable with PDF fy{x). Then the expectation of is given by

B = [ f4(2) o

I2DL: Prof. Niessner 57



E[X] = ) x-pylx) = 1 =2 . +5-6—+ 6 -

I2DL: Prof. Niessner

Expectation: Example

Example: Tossing a six-sided die
Q ={1,2,3,4,5,6}
X: represents the outcome of the toss

p(x) = P(X=x) = %Vxe Q
1 1 1

xEQ
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Expectation of a random variable

Properties: We encounter several important properties
for the expectation, i.e.

1. E[a] = a for any constanta € R
2. Linearity: ElaX + bY] = a - E[X] + b - E[Y] for any
constants @, b € R

I2DL: Prof. Niessner
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Variance of a random variable

 |ldea: The variance of a random variable is a measure
how concentrated the distribution of a random variable
IS around its mean.

 Definition: The variance is defined as
Var(X) = E[(X - E[X])] —
= E[X?] - E[X]? =

(p,rl,U’(X)
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Variance of a random variable

Example: Tossing a fair six-sided die

Q = {1,2,3,4,5,6}, X: represents the outcome of the toss @

p(x) = P(X=x) = %Vxe Q
E[X] = 3.5, E[X]? = 121
1 1 * 1 1 1
E[X?]= Y x%-p,(x)=1%-=+22-_+ .. +52-_ 4 2. _ = 15=
0 X 6 6 6 6 6
Var(X) = E[X?] - E[X]? = 15 - 121 3 x~ 291
6 4 12

I2DL: Prof. Niessner 61



Variance of a random variable

* Properties: The variance has the following
properties, i.e.
1. Var(a) = 0 for any constanta € R
2. Var(a - X+ b) = a* - Var(X)

(py,(:r? (X)

I2DL: Prof. Niessner



Standard Probability Distributions

Parameter &

Distribution . PDF or PMF Mean Variance lllustration
Notation

Bernoulli X ~ Ber(p) . " "
distribution 0<p<1 P =P =p) E[X]=p  Var(X)=p(1-p)
(Discrete) !

0 1
Binomial X ~ Bin(n, p)

distribution ;e N, € [0,1] px =) pra-py E[X]=n-p VarX) = np(1-p) I ‘ { ‘ I
(Discrete) oo ? ?es |

0 n

Uniform X~ U(a, b) —L— € a,b] 1 1
el - b-a ’ _ = - (h_ 2
distribution _ o, < 4 < p < oo Jx(x) {0 oo EX]=—(a+b) Varlx)=—(b-a) -_

(Continuous) a b g
Normal X~ N(w 6?) . 1 gz . , ‘
i 1 I X)= e = =

distribution | ¢ g g2er, 75 [X] = u Var(X) = o o

(Continuous) - R

I2DL: Prof. Niessner
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References

o http://cs229.stanford.edu/section/cs229-prob.pdf
— Comprehensive Probability Review — recommended!
« https://stanford.edu/~shervine/teaching/cme-106/cheatsheet-
probability
— Quick Overview
« https://www.deeplearningbook.org/contents/prob.html
— Another great resource. Also covers information theory basics.
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